Matthieu Kirchmeyer
I am a senior ML Scientist at Genentech in the Prescient Design team.
I am developping ML generative and predictive models for molecular design.
I obtained a PhD degree at Sorbonne Université. My PhD research focused on improving out-of-distribution generalization of deep learning models in the setting of classification and physical dynamics modelling.
I obtained a Master's degree at Mines Paris - PSL and at Ecole Normale Supérieure Paris Saclay (Master MVA).
Email  / 
Google Scholar  / 
Semantic Scholar  / 
GitHub  / 
LinkedIn  / 
Twitter
|
|
|
Score-based 3D molecule generation with neural fields
M. Kirchmeyer*,
P. O. Pinheiro*,
S. Saremi (*equal contribution)
NeurIPS 2024
ArXiv /
OpenReview /
code /
|
|
Antibody DomainBed: Out-of-Distribution Generalization in Therapeutic Protein Design
N. Tagasovka,
J. Park,
M. Kirchmeyer,
...,
K. Cho
Under Review
ArXiv /
code /
|
|
Continuous PDE Dynamics Forecasting with Implicit Neural Representations
Y. Yin*,
M. Kirchmeyer*,
J-Y. Franceschi*,
A. Rakotomamonjy,
P. Gallinari (*equal contribution)
ICLR 2023 - Spotlight (notable-top-25%). Preliminary version at NeurIPS 2022 AI4Science Workshop, ICLR 2023 Neural Fields Workshop.
arXiv /
OpenReview /
code /
|
|
Diverse Weight Averaging for Out-of-Distribution Generalization
A. Ramé*,
M. Kirchmeyer*,
T. Rahier,
A. Rakotomamonjy,
P. Gallinari,
M. Cord (*equal contribution)
NeurIPS 2022. Preliminary version at ICML 2022 PODS Workshop
arXiv /
OpenReview /
code /
slides /
poster
|
|
Generalizing to New Physical Systems via Context-Informed Dynamics Model
M. Kirchmeyer*,
Y. Yin*,
J. DonĂ ,
N. Baskiotis,
A. Rakotomamonjy,
P. Gallinari (*equal contribution)
ICML 2022
arXiv /
PMLR /
code /
slides /
poster /
video
|
|
Mapping conditional distributions for domain adaptation under generalized target shift
M. Kirchmeyer,
A. Rakotomamonjy,
E. de BĂ©zenac,
P. Gallinari
ICLR 2022. Also presented at CAp 2022 (oral)
arXiv /
OpenReview /
code /
slides /
poster /
video
|
|
Unsupervised domain adaptation with non-stochastic missing data
M. Kirchmeyer,
P. Gallinari,
A. Rakotomamonjy,
A. Mantrach
ECML-PKDD 2021 - Data Mining and Knowledge Discovery journal.
arXiv /
journal link /
pdf /
code /
slides
|
|
Conformal Robotic Stereolithography
A. Stevens*, R. Oliver*, M. Kirchmeyer, J. Wu, L. Chin, E. Polsen, C. Archer, C. Boyle, J. Garber and J. Hart (*equal contribution)
3D Printing and Additive Manufacturing journal, 2016.
journal link
|
Template modified from here
|
|