Matthieu Kirchmeyer
I am a senior ML Scientist at Genentech in the Prescient Design team in New York, USA.
I am developping ML generative and predictive models for molecular design.
I obtained a PhD degree at Sorbonne Université. My PhD research focused on improving out-of-distribution generalization of deep learning models in the setting of classification and physical dynamics modelling.
I obtained a Master's degree at Mines Paris - PSL and at Ecole Normale Supérieure Paris Saclay (Master MVA).
Email  / 
Google Scholar  / 
Semantic Scholar  / 
GitHub  / 
LinkedIn  / 
Twitter
|
|
|
Score-based 3D molecule generation with neural fields
M. Kirchmeyer*, P. O. Pinheiro*, S. Saremi
NeurIPS 2024
ArXiv /
OpenReview /
code /
|
|
Lab-in-the-loop therapeutic antibody design with deep learning
N. Frey*, I. Hötzel*, S. Stanton*, R. Kelly*, R. Alberstein*, ..., M. Kirchmeyer, ..., V. Gligorijevic.
BioRxiv
ArXiv /
|
|
Antibody DomainBed: Out-of-Distribution Generalization in Therapeutic Protein Design
N. Tagasovka*, J. Park*, M. Kirchmeyer, ..., K. Cho
ArXiv
ArXiv /
code /
|
|
Continuous PDE Dynamics Forecasting with Implicit Neural Representations
Y. Yin*, M. Kirchmeyer*, J-Y. Franceschi*, A. Rakotomamonjy, P. Gallinari
ICLR 2023 - Spotlight (notable-top-25%)
arXiv /
OpenReview /
code /
|
|
Diverse Weight Averaging for Out-of-Distribution Generalization
A. Ramé*, M. Kirchmeyer*, T. Rahier, A. Rakotomamonjy, P. Gallinari, M. Cord
NeurIPS 2022
arXiv /
OpenReview /
code /
slides /
poster
|
|
Generalizing to New Physical Systems via Context-Informed Dynamics Model
M. Kirchmeyer*,
Y. Yin*,
J. DonĂ ,
N. Baskiotis,
A. Rakotomamonjy,
P. Gallinari
ICML 2022
arXiv /
PMLR /
code /
slides /
poster /
video
|
|
Mapping conditional distributions for domain adaptation under generalized target shift
M. Kirchmeyer,
A. Rakotomamonjy,
E. de Bézenac,
P. Gallinari
ICLR 2022
arXiv /
OpenReview /
code /
slides /
poster /
video
|
Template modified from here
|
|