Matthieu Kirchmeyer

I am a senior ML Scientist at Genentech in the Prescient Design team in New York, USA. I am developping ML generative and predictive models for molecular design.

I obtained a PhD degree at Sorbonne Université. My PhD research focused on improving out-of-distribution generalization of deep learning models in the setting of classification and physical dynamics modelling. I obtained a Master's degree at Mines Paris - PSL and at Ecole Normale Supérieure Paris Saclay (Master MVA).

Email  /  Google Scholar  /  Semantic Scholar  /  GitHub  /  LinkedIn  /  Twitter

Publications
PontTuset Score-based 3D molecule generation with neural fields
M. Kirchmeyer*, P. O. Pinheiro*, S. Saremi
NeurIPS 2024
ArXiv / OpenReview / code /

PontTuset Lab-in-the-loop therapeutic antibody design with deep learning
N. Frey*, I. Hötzel*, S. Stanton*, R. Kelly*, R. Alberstein*, ..., M. Kirchmeyer, ..., V. Gligorijevic.
BioRxiv
ArXiv /

PontTuset Antibody DomainBed: Out-of-Distribution Generalization in Therapeutic Protein Design
N. Tagasovka*, J. Park*, M. Kirchmeyer, ..., K. Cho
ArXiv
ArXiv / code /

PontTuset Continuous PDE Dynamics Forecasting with Implicit Neural Representations
Y. Yin*, M. Kirchmeyer*, J-Y. Franceschi*, A. Rakotomamonjy, P. Gallinari
ICLR 2023 - Spotlight (notable-top-25%)
arXiv / OpenReview / code /

PontTuset Diverse Weight Averaging for Out-of-Distribution Generalization
A. Ramé*, M. Kirchmeyer*, T. Rahier, A. Rakotomamonjy, P. Gallinari, M. Cord
NeurIPS 2022
arXiv / OpenReview / code / slides / poster

PontTuset Generalizing to New Physical Systems via Context-Informed Dynamics Model
M. Kirchmeyer*, Y. Yin*, J. DonĂ , N. Baskiotis, A. Rakotomamonjy, P. Gallinari
ICML 2022
arXiv / PMLR / code / slides / poster / video

PontTuset Mapping conditional distributions for domain adaptation under generalized target shift
M. Kirchmeyer, A. Rakotomamonjy, E. de Bézenac, P. Gallinari
ICLR 2022
arXiv / OpenReview / code / slides / poster / video


Template modified from here