MAPPING CONDITIONAL DISTRIBUTIONS FOR DOMAIN ADAPTATION UNDER GENERALIZED TARGET SHIFT ICLR 2022

lah

Monday 25th April, 2022 to Friday 29th April, 2022

Matthieu Kirchmeyer^{1,2}, Alain Rakotomamonjy^{2,3}, Emmanuel de Bézenac¹, Patrick Gallinari^{1,2}

¹Sorbonne Université, ²Criteo Al Lab, ³Université de Rouen

ISTIUT DES SYSTÈMES INTELLIGENTS ET DE ROBOTIQUE

Introduction

Unsupervised Domain Adaptation (UDA)

Train a good classifier $h : \mathcal{X} \to \mathcal{Y}$ for an **unlabelled** target domain \mathcal{T} given a labelled source domain S.

Unsupervised Domain Adaptation (UDA)

Train a good classifier $h : \mathcal{X} \to \mathcal{Y}$ for an **unlabelled** target domain \mathcal{T} given a labelled source domain S.

 $p_S(X,Y) \neq p_T(X,Y)$

Unsupervised Domain Adaptation (UDA)

Train a good classifier $h : \mathcal{X} \to \mathcal{Y}$ for an **unlabelled** target domain \mathcal{T} given a labelled source domain S. $p_S(X, Y) \neq p_T(X, Y)$

Generalized Target Shift

We consider the most challenging UDA setting, Generalized target shift (GeTarS) $_{\text{Zhang et al. 2013}}$ where: $p_S(X|Y) \neq p_T(X|Y), p_S(Y) \neq p_T(Y)$

SCIENCES SORBONNE UNIVERSITÉ

UDA under generalized target shift

Standard is to learn domain-invariant representations

 $h: \mathcal{X} \xrightarrow{g} \mathcal{Z} \xrightarrow{f_{S}} \mathcal{Y}$ where g: encoder, $f_{S}:$ classifier,

UDA under generalized target shift

Standard is to learn domain-invariant representations

 $h: \mathcal{X} \xrightarrow{g} \mathcal{Z} \xrightarrow{f_{S}} \mathcal{Y}$ where g: encoder, $f_{S}:$ classifier, Solve two steps jointly:

UDA under generalized target shift

Standard is to learn domain-invariant representations

 $h: \mathcal{X} \xrightarrow{g} \mathcal{Z} \xrightarrow{f_S} \mathcal{Y}$ where g: encoder, $f_S:$ classifier, Solve two steps jointly:

- Learn f_S to classify encoded S samples.
- Learn g to match encoded S and T samples.

UDA under generalized target shift

Standard is to learn domain-invariant representations

 $h: \mathcal{X} \xrightarrow{g} \mathcal{Z} \xrightarrow{f_S} \mathcal{Y}$ where g: encoder, $f_S:$ classifier, Solve two steps jointly:

- Learn f_S to classify encoded S samples.
- Learn g to match encoded S and T samples.
- Under GeTarS, reweight S samples by estimated class-ratios.

Combes et al. 2020; Gong et al. 2016; Rakotomamonjy et al. 2021; Shui et al. 2021

Limitations of invariant representation learning

UDA under generalized target shift

 It is prone to instabilities due to adversarial alignment, especially without established NN architectures.

UDA under generalized target shift

SCIENCES SORBONNE UNIVERSITÉ

Limitations of invariant representation learning

- It is prone to instabilities due to adversarial alignment, especially without established NN architectures.
- Target discriminativity may degrade Liu et al. 2019.

UDA under generalized target shift

Limitations of invariant representation learning

- It is prone to instabilities due to adversarial alignment, especially without established NN architectures.
- Target discriminativity may degrade Liu et al. 2019.
- Generalization guarantees for GeTarS are derived under strong assumptions which may not hold in practice.

UDA under generalized target shift

Limitations of invariant representation learning

- It is prone to instabilities due to adversarial alignment, especially without established NN architectures.
- Target discriminativity may degrade Liu et al. 2019.
- Generalization guarantees for GeTarS are derived under strong assumptions which may not hold in practice.

UDA under generalized target shift

Limitations of invariant representation learning

- It is prone to instabilities due to adversarial alignment, especially without established NN architectures.
- Target discriminativity may degrade Liu et al. 2019.
- Generalization guarantees for GeTarS are derived under strong assumptions which may not hold in practice.

OSTAR: an alternative to domain-invariance for GeTarS

Aligns pretrained representations with a NN mapping.

UDA under generalized target shift

Limitations of invariant representation learning

- It is prone to instabilities due to adversarial alignment, especially without established NN architectures.
- Target discriminativity may degrade Liu et al. 2019.
- Generalization guarantees for GeTarS are derived under strong assumptions which may not hold in practice.

- Aligns pretrained representations with a NN mapping.
- This mapping is regularized with Optimal Transport (OT):

UDA under generalized target shift

Limitations of invariant representation learning

- It is prone to instabilities due to adversarial alignment, especially without established NN architectures.
- Target discriminativity may degrade Liu et al. 2019.
- Generalization guarantees for GeTarS are derived under strong assumptions which may not hold in practice.

OSTAR: an alternative to domain-invariance for GeTarS

Aligns pretrained representations with a NN mapping.
This mapping is regularized with Optimal Transport (OT):
useful inductive biases for stability and performance.

UDA under generalized target shift

Limitations of invariant representation learning

- It is prone to instabilities due to adversarial alignment, especially without established NN architectures.
- Target discriminativity may degrade Liu et al. 2019.
- Generalization guarantees for GeTarS are derived under strong assumptions which may not hold in practice.

- Aligns pretrained representations with a NN mapping.
- This mapping is regularized with Optimal Transport (OT):
 - useful inductive biases for stability and performance.
 - under mild assumptions, provides two theoretical guarantees:

UDA under generalized target shift

Limitations of invariant representation learning

- It is prone to instabilities due to adversarial alignment, especially without established NN architectures.
- Target discriminativity may degrade Liu et al. 2019.
- Generalization guarantees for GeTarS are derived under strong assumptions which may not hold in practice.

- Aligns pretrained representations with a NN mapping.
- This mapping is regularized with Optimal Transport (OT):
 - useful inductive biases for stability and performance.
 - under mild assumptions, provides two theoretical guarantees:
 - explicit control of the target risk.

UDA under generalized target shift

Limitations of invariant representation learning

- It is prone to instabilities due to adversarial alignment, especially without established NN architectures.
- Target discriminativity may degrade Liu et al. 2019.
- Generalization guarantees for GeTarS are derived under strong assumptions which may not hold in practice.

- Aligns pretrained representations with a NN mapping.
- This mapping is regularized with Optimal Transport (OT):
 - useful inductive biases for stability and performance.
 - under mild assumptions, provides two theoretical guarantees:
 - explicit control of the target risk.
 - unicity of the solution.

OSTAR framework

Objectives

• Encode input S and T samples with g

Objectives

With fixed representations jointly

1 Map encoded S samples onto T with ϕ under OT constraints.

Objectives

- With fixed representations jointly
 - **2** Reweight mapped S samples with class-ratio estimates $\boldsymbol{p}_N^Y/\boldsymbol{p}_S^Y$.

Objectives

With fixed representations jointly

3 Train classifier f_N on reweighted and mapped S samples

Objectives

• Use f_N for inference on encoded T samples.

Improving target discriminativity

■ The encoder *g* was so far fixed.

Improving target discriminativity

- The encoder *g* was so far fixed.
- We update g using target pseudo-labels with Information Maximization (IM).

Improving target discriminativity

- The encoder *g* was so far fixed.
- We update g using target pseudo-labels with Information Maximization (IM).
- Improves target discriminativity and helps alignment.

Improving target discriminativity

- The encoder *g* was so far fixed.
- We update g using target pseudo-labels with Information Maximization (IM).
- Improves target discriminativity and helps alignment.

Theoretical results

New upper-bound to the target risk under GeTarS.

Improving target discriminativity

- The encoder *g* was so far fixed.
- We update g using target pseudo-labels with Information Maximization (IM).
- Improves target discriminativity and helps alignment.

Theoretical results

- New upper-bound to the target risk under GeTarS.
- We define mild assumptions on g, for which

Improving target discriminativity

- The encoder *g* was so far fixed.
- We update g using target pseudo-labels with Information Maximization (IM).
- Improves target discriminativity and helps alignment.

Theoretical results

- New upper-bound to the target risk under GeTarS.
- We define mild assumptions on g, for which
 - OSTAR controls the target risk at optimum.

Improving target discriminativity

- The encoder *g* was so far fixed.
- We update g using target pseudo-labels with Information Maximization (IM).
- Improves target discriminativity and helps alignment.

Theoretical results

- New upper-bound to the target risk under GeTarS.
- \blacksquare We define mild assumptions on g, for which
 - OSTAR controls the target risk at optimum.
 - Its solution $(\phi, \boldsymbol{p}_N^Y)$ is unique.

Results ○●○

t-SNE feature visualizations

(left) source, target and mapped source. (right) classes in source and target.

Performance on visual UDA datasets

Balanced accuracy (↑) over 10 runs with best performance in **bold**. Results are aggregated over imbalance scenarios and datasets.

Setting	Source	DANN	$WD_{\beta=0}$	$WD_{\beta=1}$	$WD_{\beta=2}$	MARSg	MARSc	IW-WD	OSTAR+IM	
Digits										
balanced	$\textbf{74.98} \pm \textbf{3.8}$	90.81 ± 1.3	92.63 ± 1.0	82.80 ± 4.7	76.07 ± 7.1	92.18 ± 2.2	94.91 ± 1.4	95.89 ± 0.5	$\textbf{97.51} \pm \textbf{0.3}$	
subsampled	75.05 ± 3.1	89.91 ± 1.5	89.45 ± 1.0	81.56 ± 4.8	77.77 ± 6.5	91.87 ± 2.0	93.75 ± 1.4	93.22 ± 1.1	$\textbf{96.69} \pm \textbf{0.7}$	
VisDA12										
original	$\textbf{48.63} \pm \textbf{1.0}$	53.72 ± 0.9	57.40 ± 1.1	47.56 ± 0.8	36.21 ± 1.8	55.62 ± 1.6	55.33 ± 0.8	51.88 ± 1.6	59.24 ± 0.5	
subsampled	42.46 ± 1.4	47.57 ± 0.9	47.32 ± 1.4	41.48 ± 1.6	31.83 ± 3.0	55.00 ± 1.9	51.86 ± 2.0	50.65 ± 1.5	$\textbf{58.84} \pm \textbf{1.0}$	
Office31										
subsampled	74.50 ± 0.5	76.13 ± 0.3	76.24 ± 0.3	74.23 ± 0.5	$\textbf{72.40} \pm \textbf{1.8}$	80.20 ± 0.4	80.00 ± 0.5	77.28 ± 0.4	$\textbf{82.61} \pm \textbf{0.4}$	
OfficeHome										
subsampled	50.56 ± 2.8	50.87 ± 1.05	53.47 ± 0.7	52.24 ± 1.1	49.48 ± 1.3	56.60 ± 0.4	56.22 ± 0.6	54.87 ± 0.4	59.51 ± 0.4	

Performance on visual UDA datasets

Balanced accuracy (\uparrow) over 10 runs with best performance in **bold**. Results are aggregated over imbalance scenarios and datasets.

Setting	Source	DANN	$WD_{\beta=0}$	$WD_{\beta=1}$	$WD_{\beta=2}$	MARSg	MARSc	IW-WD	OSTAR+IM	
Digits										
balanced	$\textbf{74.98} \pm \textbf{3.8}$	90.81 ± 1.3	92.63 ± 1.0	82.80 ± 4.7	76.07 ± 7.1	92.18 ± 2.2	94.91 ± 1.4	95.89 ± 0.5	$\textbf{97.51} \pm \textbf{0.3}$	
subsampled	75.05 ± 3.1	89.91 ± 1.5	89.45 ± 1.0	81.56 ± 4.8	77.77 ± 6.5	91.87 ± 2.0	93.75 ± 1.4	93.22 ± 1.1	$\textbf{96.69} \pm \textbf{0.7}$	
VisDA12										
original	$\textbf{48.63} \pm \textbf{1.0}$	53.72 ± 0.9	57.40 ± 1.1	47.56 ± 0.8	36.21 ± 1.8	55.62 ± 1.6	55.33 ± 0.8	51.88 ± 1.6	59.24 ± 0.5	
subsampled	42.46 ± 1.4	47.57 ± 0.9	47.32 ± 1.4	41.48 ± 1.6	31.83 ± 3.0	55.00 ± 1.9	51.86 ± 2.0	50.65 ± 1.5	$\textbf{58.84} \pm \textbf{1.0}$	
Office31										
subsampled	74.50 ± 0.5	76.13 ± 0.3	76.24 ± 0.3	74.23 ± 0.5	$\textbf{72.40} \pm \textbf{1.8}$	80.20 ± 0.4	80.00 ± 0.5	77.28 ± 0.4	$\textbf{82.61}\pm\textbf{0.4}$	
OfficeHome										
subsampled	50.56 ± 2.8	50.87 ± 1.05	53.47 ± 0.7	52.24 ± 1.1	49.48 ± 1.3	56.60 ± 0.4	56.22 ± 0.6	54.87 ± 0.4	59.51 ± 0.4	

Same trends for target label estimation error $\|\boldsymbol{p}_N^Y - \boldsymbol{p}_T^Y\|_1$.

Performance on visual UDA datasets

Balanced accuracy (\uparrow) over 10 runs with best performance in **bold**. Results are aggregated over imbalance scenarios and datasets.

Setting	Source	DANN	$WD_{\beta=0}$	$WD_{\beta=1}$	$WD_{\beta=2}$	MARSg	MARSc	IW-WD	OSTAR+IM	
Digits										
balanced	$\textbf{74.98} \pm \textbf{3.8}$	90.81 ± 1.3	92.63 ± 1.0	82.80 ± 4.7	76.07 ± 7.1	92.18 ± 2.2	94.91 ± 1.4	95.89 ± 0.5	$\textbf{97.51} \pm \textbf{0.3}$	
subsampled	75.05 ± 3.1	89.91 ± 1.5	89.45 ± 1.0	81.56 ± 4.8	77.77 ± 6.5	91.87 ± 2.0	93.75 ± 1.4	93.22 ± 1.1	$\textbf{96.69} \pm \textbf{0.7}$	
VisDA12										
original	$\textbf{48.63} \pm \textbf{1.0}$	53.72 ± 0.9	57.40 ± 1.1	47.56 ± 0.8	36.21 ± 1.8	55.62 ± 1.6	55.33 ± 0.8	51.88 ± 1.6	59.24 ± 0.5	
subsampled	42.46 ± 1.4	47.57 ± 0.9	47.32 ± 1.4	41.48 ± 1.6	31.83 ± 3.0	55.00 ± 1.9	51.86 ± 2.0	50.65 ± 1.5	$\textbf{58.84} \pm \textbf{1.0}$	
Office31										
subsampled	74.50 ± 0.5	76.13 ± 0.3	76.24 ± 0.3	74.23 ± 0.5	$\textbf{72.40} \pm \textbf{1.8}$	80.20 ± 0.4	80.00 ± 0.5	77.28 ± 0.4	$\textbf{82.61} \pm \textbf{0.4}$	
OfficeHome										
subsampled	50.56 ± 2.8	50.87 ± 1.05	53.47 ± 0.7	52.24 ± 1.1	49.48 ± 1.3	56.60 ± 0.4	56.22 ± 0.6	54.87 ± 0.4	59.51 ± 0.4	

Same trends for target label estimation error $\|\boldsymbol{p}_N^Y - \boldsymbol{p}_T^Y\|_1$.

Domain-invariant baselines designed for:

- Covariate shift w/o reweighting (DANN Ganin et al. 2016, WD_{β=0} Shen et al. 2018).
- GeTarS with reweighting $(WD_{\beta \in \{1,2\}} \text{ wu et al. 2019, MARS})$ Rakotomamonjy et al. 2021; IW-WD Combes et al. 2020.

Summary

- OSTAR, a new general OT approach to align pretrained representations under Generalized Target Shift.
- Strong generalization guarantees under mild assumptions.

Summary

- OSTAR, a new general OT approach to align pretrained representations under Generalized Target Shift.
- Strong generalization guarantees under mild assumptions.

Paper, code and contact

- https://openreview.net/forum?id=sPfB2PI87BZ
- https://github.com/mkirchmeyer/ostar
- Contact: matthieu.kirchmeyer@isir.upmc.fr

Summary

- OSTAR, a new general OT approach to align pretrained representations under Generalized Target Shift.
- Strong generalization guarantees under mild assumptions.

Paper, code and contact

- https://openreview.net/forum?id=sPfB2PI87BZ
- https://github.com/mkirchmeyer/ostar
- Contact: matthieu.kirchmeyer@isir.upmc.fr

Thank you for your attention !

References I

- Combes, Remi Tachet des et al. (2020). "Domain Adaptation with Conditional Distribution Matching and Generalized Label Shift". In: Advances in Neural Information Processing Systems.
- Ganin, Yaroslav et al. (2016). "Domain-Adversarial Training of Neural Networks". In: *Journal of Machine Learning Research* 17.59, pp. 1–35.
- Gong, Mingming et al. (2016). "Domain Adaptation with Conditional Transferable Components". In: *Proceedings of The 33rd ICML*. Vol. 48. Proceedings of Machine Learning Research. New York, New York, USA: PMLR, pp. 2839–2848.

Liu, Hong et al. (2019). "Transferable Adversarial Training: A General Approach to Adapting Deep Classifiers". In: *Proceedings of 36th ICML*. Vol. 97. Proceedings of ML Research. PMLR, pp. 4013–4022.

Rakotomamonjy, A. et al. (2021). "Optimal transport for conditional domain matching and label shift". In: *Machine Learning*.

References II

- Shen, Jian et al. (2018). "Wasserstein Distance Guided Representation Learning for Domain Adaptation". In: AAAI-18, 30th IAAI-18, 8th AAAI Symposium on EAAI-18, New Orleans, USA, February 2-7. AAAI Press, pp. 4058–4065.
- Shui, Changjian et al. (2021). "Aggregating From Multiple Target-Shifted Sources". In: Proceedings of the 38th International Conference on Machine Learning. Ed. by Marina Meila and Tong Zhang. Vol. 139. Proceedings of Machine Learning Research. PMLR, pp. 9638–9648. url: http://proceedings.mlr.press/v139/shui21a.html.

Wu, Yifan et al. (2019). "Domain Adaptation with Asymmetrically-Relaxed Distribution Alignment". In: *ICML*. Vol. 97. Proceedings of ML Research. Long Beach, CA, USA: PMLR, pp. 6872–6881.

Zhang, Kun et al. (2013). "Domain Adaptation under Target and Conditional Shift". In: *Proceedings of the 30th ICML*. Vol. 28. Proceedings of Machine Learning Research 3. Atlanta, Georgia, USA, pp. 819–827.