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Introduction OSTAR framework Results Conclusion

Problem definition

Unsupervised Domain Adaptation (UDA)

Train a good classifier h : X → Y for an unlabelled target domain
T given a labelled source domain S .

pS(X ,Y ) ̸= pT (X ,Y )

Generalized Target Shift

We consider the most challenging UDA setting, Generalized target
shift (GeTarS) Zhang et al. 2013 where:

pS(X |Y ) ̸= pT (X |Y ), pS(Y ) ̸= pT (Y )
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Introduction OSTAR framework Results Conclusion

UDA under generalized target shift

Standard is to learn domain-invariant representations

h : X g7→ Z fS7→ Y where g : encoder, fS : classifier,

Learn fS to classify encoded S samples.
Learn g to match encoded S and T samples.
Under GeTarS, reweight S samples by estimated class-ratios.
Combes et al. 2020; Gong et al. 2016; Rakotomamonjy et al. 2021; Shui et al. 2021
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Introduction OSTAR framework Results Conclusion

UDA under generalized target shift

Limitations of invariant representation learning

It is prone to instabilities due to adversarial alignment,
especially without established NN architectures.

Target discriminativity may degrade Liu et al. 2019.
Generalization guarantees for GeTarS are derived under strong
assumptions which may not hold in practice.

OSTAR: an alternative to domain-invariance for GeTarS

Aligns pretrained representations with a NN mapping.
This mapping is regularized with Optimal Transport (OT):

useful inductive biases for stability and performance.
under mild assumptions, provides two theoretical guarantees:

explicit control of the target risk.
unicity of the solution.
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Optimal Sample Transport and Reweight (OSTAR) (I)

Objectives

Encode input S and T samples with g

With fixed representations jointly

1 Map encoded S samples onto T with ϕ under OT constraints.
2 Reweight mapped S samples with class-ratio estimates pY

N/p
Y
S .

3 Train classifier fN on reweighted and mapped S samples

Use fN for inference on encoded T samples.
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Introduction OSTAR framework Results Conclusion

Optimal Sample Transport and Reweight (OSTAR) (II)

Improving target discriminativity

The encoder g was so far fixed.

We update g using target pseudo-labels with Information
Maximization (IM).
Improves target discriminativity and helps alignment.
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t-SNE feature visualizations

(a) USPS→MNIST

(b) VisDA

(left) source, target and mapped source. (right) classes in source and target.
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Introduction OSTAR framework Results Conclusion

Performance on visual UDA datasets

Balanced accuracy (↑) over 10 runs with best performance in bold.
Results are aggregated over imbalance scenarios and datasets.

Setting Source DANN WDβ=0 WDβ=1 WDβ=2 MARSg MARSc IW-WD OSTAR+IM

Digits

balanced 74.98 ± 3.8 90.81 ± 1.3 92.63 ± 1.0 82.80 ± 4.7 76.07 ± 7.1 92.18 ± 2.2 94.91 ± 1.4 95.89 ± 0.5 97.51 ± 0.3
subsampled 75.05 ± 3.1 89.91 ± 1.5 89.45 ± 1.0 81.56 ± 4.8 77.77 ± 6.5 91.87 ± 2.0 93.75 ± 1.4 93.22 ± 1.1 96.69 ± 0.7

VisDA12

original 48.63 ± 1.0 53.72 ± 0.9 57.40 ± 1.1 47.56 ± 0.8 36.21 ± 1.8 55.62 ± 1.6 55.33 ± 0.8 51.88 ± 1.6 59.24 ± 0.5
subsampled 42.46 ± 1.4 47.57 ± 0.9 47.32 ± 1.4 41.48 ± 1.6 31.83 ± 3.0 55.00 ± 1.9 51.86 ± 2.0 50.65 ± 1.5 58.84 ± 1.0

Office31

subsampled 74.50 ± 0.5 76.13 ± 0.3 76.24 ± 0.3 74.23 ± 0.5 72.40 ± 1.8 80.20 ± 0.4 80.00 ± 0.5 77.28 ± 0.4 82.61 ± 0.4

OfficeHome

subsampled 50.56 ± 2.8 50.87 ± 1.05 53.47 ± 0.7 52.24 ± 1.1 49.48 ± 1.3 56.60 ± 0.4 56.22 ± 0.6 54.87 ± 0.4 59.51 ± 0.4

Same trends for target label estimation error ∥pY
N − pY

T ∥1.

Domain-invariant baselines designed for:
Covariate shift w/o reweighting (DANN Ganin et al. 2016, WDβ=0
Shen et al. 2018).
GeTarS with reweighting (WDβ∈{1,2} Wu et al. 2019, MARS
Rakotomamonjy et al. 2021; IW-WD Combes et al. 2020).
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Conclusion

Summary

OSTAR, a new general OT approach to align pretrained
representations under Generalized Target Shift.
Strong generalization guarantees under mild assumptions.

Paper, code and contact

https://openreview.net/forum?id=sPfB2PI87BZ

https://github.com/mkirchmeyer/ostar

Contact: matthieu.kirchmeyer@isir.upmc.fr

Thank you for your attention !
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