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Unsupervised Domain Adaptation (UDA)

Train a good classifier h: X — Y for an unlabelled target domain
T given a labelled source domain S.

ps(X,Y) # pr(X,Y)

Generalized Target Shift

We consider the most challenging UDA setting, Generalized target

shift (GeTarsS) zhang et al. 2013 Where:
ps(X|Y) # pr(X]Y), ps(Y) # pr(Y)

1/10



Introduction 00O®0 OSTAR framework 000 Results 000 Conclusion 00

"™\ SCIENCES

UDA under generalized target shift Ssoasouue

UNIVERSITE

Standard is to learn domain-invariant representations

h-x & z5 Y where g: encoder, fs: classifier,

2/10



Introduction 00O®0 OSTAR framework Results 000 Conclusion

"™\ SCIENCES

UDA under generalized target shift Ssoasouue

UNIVERSITE

Standard is to learn domain-invariant representations

h-x&z8 Y where g: encoder, fs: classifier,
Solve two steps jointly:

2/10



Introduction 00O®0 OSTAR framework Results 000 Conclusion

"™\ SCIENCES

UDA under generalized target shift Ssoasouue

UNIVERSITE

Standard is to learn domain-invariant representations
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m Learn fs to classify encoded S samples.
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Standard is to learn domain-invariant representations

h:x & z »fi Y where g: encoder, fs: classifier,
Solve two steps jointly:

m Learn fs to classify encoded S samples.
m Learn g to match encoded S and T samples.

m Under GeTars$, reweight S samples by estimated class-ratios.

Combes et al. 2020; Gong et al. 2016; Rakotomamonjy et al. 2021; Shui et al. 2021

pr(X,Y) # ps(X,Y) pr(Z,Y) # ps(Z,Y)
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OSTAR: an alternative to domain-invariance for GeTarS

Aligns pretrained representations with a NN mapping.
This mapping is regularized with Optimal Transport (OT):

useful inductive biases for stability and performance.
under mild assumptions, provides two theoretical guarantees:

explicit control of the target risk.
unicity of the solution.
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m Encode input S and T samples with g

prX,Y) # ps(X,Y) pr(Z,Y) #ps(Z,Y)
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m With fixed representations jointly

Map encoded S samples onto T with ¢ under OT constraints.
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m With fixed representations jointly

Reweight mapped S samples with class-ratio estimates p)/p¥.
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m With fixed representations jointly

Train classifier f on reweighted and mapped S samples
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m Use fyy for inference on encoded T samples.

. Iy )
- og( &)

g ‘ x/ X ; x g( )
- N Zr=g(xp)
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m The encoder g was so far fixed.
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Improving target discriminativity

m The encoder g was so far fixed.

m We update g using target pseudo-labels with Information
Maximization (IM).

m Improves target discriminativity and helps alignment.

Theoretical results

m New upper-bound to the target risk under GeTarsS.
m We define mild assumptions on g, for which

m OSTAR controls the target risk at optimum.
m Its solution (¢, p)) is unique.
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Balanced accuracy (1) over 10 runs with best performance in bold.
Results are aggregated over imbalance scenarios and datasets.

Setting Source DANN WDs—o WDjs_y WD, MARSg MARSc IW-WD OSTAR+IM

Digits

balanced  74.98+38 90.81+13 92.63+1.0 8280+47 76.07+7.1 9218+22 9491+14 9589+0.5 97.51 + 0.3
subsampled 75.05+3.1 89.91+15 89.45+10 81.56+4.8 77.77+6.5 01.87+20 93.75+14 9322411 96.69 + 0.7

VisDA12

original 4863 +1.0 53.72+09 57.40+1.1 47564+08 36.21+18 5562+16 5533+08 51.88+16 59.24 + 0.5
subsampled 4246 +1.4 4757+09 4732+14 4148+1.6 31.83+3.0 5500+19 51.86+20 50.65+15 58.84 + 1.0

Office31
subsampled 7450+0.5 76.13+0.3 76.24+0.3 7423+0.5 7240+1.8 80.20+04 80.00+05 77.28+0.4 82.61 + 0.4

OfficeHome
subsampled 50.56 +2.8 50.87 +1.05 53.47+0.7 5224411 49.48+13 56.60+04 56.22+06 5487+04 59.51 +0.4
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Same trends for target label estimation error ||pY, — p¥ 1.

Domain-invariant baselines designed for:
m Covariate shift w/o reweighting (DANN Ganin et al. 2016, WDg—
Shen et al. 2018).
m GeTarS with reweighting (WDgc(1 21 wu et al. 2010, MARS
Rakotomamonjy et al. 2021, LW-WD Combes et al. 2020).
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Thank you for your attention !
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