

UNSUPERVISED DOMAIN ADAPTATION WITH NON-STOCHASTIC MISSING DATA ECML 2021 - Data Mining and Knowledge Discovery

Monday 13th September, 2021 to Friday 17th September, 2021

Matthieu Kirchmeyer^{1,2}, Patrick Gallinari^{1,2}, Alain Rakotomamonjy^{2,3}, Amin Mantrach⁴

¹Sorbonne Université, CNRS, LIP6, ²Criteo AI Lab, ³Université de Rouen - LITIS, ⁴Amazon

Introduction

Missing data is present in many real-world applications.

Formalization 🔍

Experiments 000

Missing data

Missing data is present in many real-world applications.

Formalization OC

Experiments 000

00 Conclusio

References O

Missing data is present in many real-world applications.

MRI Modality

ormalization 000

Experiments 0000

Conclusion of

References OC

Missing data

Missing data is present in many real-world applications.

MRI Modality

6.124 The propositions of rather they represent it. that names have meaning a their connexion with the i must be indicated by the essence involves the posstautologies. This contain: things are arbitrary in th not. In logic it is only ' is not a field in which w

ormalization 000

xperiments 0000

Conclusion OC

References oc

Missing data

Missing data is present in many real-world applications.

世間吃宽富樂場終憂愁,久惡於此, 為樂在他,為喜在已。為咸在他,為 為真高,說之與滿,就之與右,語之 含言,依於時,與導者言,依於辨 員,處常名言,依於奈,與常者言,在於辨 言,依於說。此言之新也,來用在早 非所宜為,勿為以避其危,非所宜取 還其覺,一覺而非,疑問勿追,一言 語不留耳,此謂君子也,夫任臣之法, 報也,勇則不近也,信則不信也,不 6.124 The propositions of rather they represent it. that names have meaning a their connexion with the u must be indicated by the essence involves the posstautologies. This contain: things are arbitrary in ti not. In logic it is only ' is not a field in which w MRI Modality

PET Modality

ormalization 000

Experiments 000

000 Conclus

O Referen

Missing data

Missing data is present in many real-world applications.

世間吃豆富樂場終憂愁,久惡於此, 為樂在他,為喜在已。為頃在他,為 之與高,謝之與遙,故之與右。語之 含言,依於時,與釋者言,依於歸, 夏,當了,依於時,與釋者言,依於歸, 言,依於說,此言之都也,不用在早 算其覺,一覺而非,題馬勿追,一言 語不留耳,此謂君子也,未任臣之法 報也,勇則不近也,信則不信也,不 6.124 The propositions of rather they represent it. that names have meaning a their connexion with the u must be indicated by the essence involves the posstautologies. This contain: things are arbitrary in ti not. In logic it is only ' is not a field in which w MRI Modality PET Modality IS Ultra-Compact Binoculars Tongass National Forest Map Lightweight and powerful, Detailed Map Of Prince of : 4 the ultra-compact 10x30 Wales Island in Tongass Image Stabilization National Forest. This Map Binoculars delivers (...) is detailed (...) "Excellent Optics." ***** (a) (b) Durable camping watch. n.a. New in original packaging. Brown leather strap, backpack clip and compass "My son likes it!" (c) (d)

Existing methods usually consider stochastic missing data.

ormalization 000

xperiments 0000

Conclusion

References oc

Missing data

Missing data is present in many real-world applications.

世間起宽喜樂場怒憂愁、久惡於此、 為樂在他、為喜在已、為頃在他、為 為口、為以為人、 當二、依於得。與導者言、依於辨 員、依於時。與導者言、依於辨 言、依於說。此言之對也。不用在早 非所宜為、勿為以避其危。非所宜取 道其聲。一聲而非、顯馬勿追。一言 語不留耳。此謂君子也。夫任臣之法。 報也,與則不近也、信則不信也。不 6.124 The propositions of rather they represent it. that names have meaning a their connexion with the u must be indicated by the essence involves the posstautologies. This contain: things are arbitrary in ti not. In logic it is only ' is not a field in which w MRI Modality PET Modality IS Ultra-Compact Binoculars Tongass National Forest Map Lightweight and powerful, Detailed Map Of Prince of Wales Island in Tongass the ultra-compact 10x30 Image Stabilization National Forest, This Man Binoculars delivers (...) is detailed (...) "Excellent Optics." ***** (a) (b) Durable camping watch. n.a. New in original packaging. Brown leather strap, backpack clip and compass "My son likes it!"

(d)

(c)

Existing methods usually consider stochastic missing data.

Missing Completely At Random (MCAR) Rubin 1976

 $\forall \mathsf{x}, p_{\phi}(\mathsf{m}|\mathsf{x}) = p_{\phi}(\mathsf{m})$

m stochastic.

 MCAR when m is deterministic, a.k.a. non-stochastic missing data, is seldom considered. rmalization 000

Experiments 000

Non-stochastic missing data

- MCAR when m is deterministic, a.k.a. non-stochastic missing data, is seldom considered.
- Yet, common in applications e.g. cold-start

Introduction 0000 Model 000 Form

ormalization 00

Experiments 000

Non-stochastic missing data

- MCAR when m is deterministic, a.k.a. non-stochastic missing data, is seldom considered.
- Yet, common in applications e.g. cold-start

rmalization 000

Experiments 000

Non-stochastic missing data

- MCAR when m is deterministic, a.k.a. non-stochastic missing data, is seldom considered.
- Yet, common in applications e.g. cold-start

Contributions

Handle non-stochastic missing data with unsupervised domain adaptation (UDA).

Non-stochastic missing data

Introduction 0000

- MCAR when m is deterministic. a.k.a. non-stochastic missing data, is seldom considered.
- Yet, common in applications e.g. cold-start

Partner C

Partner B

Contributions

- Handle non-stochastic missing data with unsupervised domain adaptation (UDA).
- Formalize the problem.

Partner A

Partner B cold-start

Adaptation-Imputation problem definition

\blacksquare labelled x_S and unlabelled x_T under distribution shift.

Source domain Full and labelled

Target domain Missing and unlabelled

labelled x_S and unlabelled x_T under distribution shift.
 x_e = (x_{e1}, x_{e2}), e ∈ {S, T} with x_S fully observed; x_{T2} missing.

Target domain Missing and unlabelled

1 labelled x_S and unlabelled x_T under distribution shift.

- 2 $x_e = (x_{e_1}, x_{e_2}), e \in \{S, T\}$ with x_S fully observed; x_{T_2} missing.
- (1), (2) \rightarrow UDA under non-stochastic missingness.

Source domain Full and labelled

Target domain Missing and unlabelled

- **1** labelled x_S and unlabelled x_T under distribution shift.
- 2 $x_e = (x_{e_1}, x_{e_2}), e \in \{S, T\}$ with x_S fully observed; x_{T_2} missing.
- 3 no supervision for imputation on T.
- (1), (2) \rightarrow UDA under non-stochastic missingness.
- (3) \rightarrow imputation without supervision.

Adaptation-Imputation problem definition

Introduction 0000

- 1 labelled x_S and unlabelled x_T under distribution shift.
- 2 $x_e = (x_{e_1}, x_{e_2}), e \in \{S, T\}$ with x_S fully observed; x_{T_2} missing.
- **3** no supervision for imputation on T.
- (1), (2) \rightarrow UDA under non-stochastic missingness.
- (3) \rightarrow imputation without supervision.

Goal: train a classifier \hat{h} with low classification error on T.

Model: $\hat{h} : \mathcal{X}_1 \to \mathcal{Y} = \{0, \dots, K\}, \ \hat{h} = f \circ \hat{g} \text{ on } S \text{ and } T$

Model:
$$\hat{h} : \mathcal{X}_1 \to \mathcal{Y} = \{0, \dots, K\}, \ \hat{h} = f \circ \hat{g} \text{ on } S \text{ and } T$$

• $\hat{g}: \mathcal{X}_1 \to \mathcal{Z} = (\mathcal{Z}_1, \mathcal{Z}_2)$ encoder using x_{e_1} .

Model:
$$\hat{h} : \mathcal{X}_1 \to \mathcal{Y} = \{0, \dots, K\}, \ \hat{h} = f \circ \hat{g} \text{ on } S \text{ and } T$$

•
$$\hat{g}: \mathcal{X}_1 \to \mathcal{Z} = (\mathcal{Z}_1, \mathcal{Z}_2)$$
 encoder using x_{e_1} .

• $g_1: \mathcal{X}_1 \to \mathcal{Z}_1$ encoder of x_{e_1} .

Model:
$$\hat{h} : \mathcal{X}_1 \to \mathcal{Y} = \{0, \dots, K\}, \ \hat{h} = f \circ \hat{g} \text{ on } S \text{ and } T$$

• $\hat{g}: \mathcal{X}_1 \to \mathcal{Z} = (\mathcal{Z}_1, \mathcal{Z}_2)$ encoder using x_{e_1} .

g₁: X₁ → Z₁ encoder of x_{e1}.
 r: Z₁ → Z₂ conditional generator of z_{e2} given z_{e1}.

Model:
$$\hat{h} : \mathcal{X}_1 \to \mathcal{Y} = \{0, \dots, K\}, \ \hat{h} = f \circ \hat{g} \text{ on } S \text{ and } T$$

•
$$\hat{g}: \mathcal{X}_1 \to \mathcal{Z} = (\mathcal{Z}_1, \mathcal{Z}_2)$$
 encoder using x_{e_1} .

g₁: X₁ → Z₁ encoder of x_{e1}.
 r: Z₁ → Z₂ conditional generator of z_{e2} given z_{e1}.

• $f: \mathcal{Z} \to \mathcal{Y} = \{0, \dots, K\}$ classifier.

Model components

- Model: $\hat{h} : \mathcal{X}_1 \to \mathcal{Y} = \{0, \dots, K\}, \ \hat{h} = f \circ \hat{g} \text{ on } S \text{ and } T$
 - ĝ: X₁ → Z = (Z₁, Z₂) encoder using x_{e₁}.
 g₁: X₁ → Z₁ encoder of x_{e₁}.
 r: Z₁ → Z₂ conditional generator of z_{e₂} given z_{e₁}.

• $f: \mathcal{Z} \to \mathcal{Y} = \{0, \dots, K\}$ classifier.

Reference: $h : \mathcal{X} \to \mathcal{Y}$, $h = f \circ g$ only on **S**

• $g: \mathcal{X}_1 \times \mathcal{X}_2 \to \mathcal{Z}$ encoder with both (x_{e_1}, x_{e_2}) components.

• $g_2: \mathcal{X}_2 \to \mathcal{Z}_2$ encoder of x_{e_2} .

4/14

Model training

Adversarial training

Three modules for imputation, adaptation, classification.

$$\min_{g_1, g_2, r, f} \max_{D_1, D_2} L_1 + (L_{ADV} + \lambda_{MSE} L_{MSE}) + L_3$$
(1)

Formalization

After projection with $g = (g_1, g_2)$,

 $p_S(Z_2|Z_1) = p_T(Z_2|Z_1), \quad p_S(Z_1) \neq p_T(Z_1)$

After projection with $g = (g_1, g_2)$,

$$p_S(Z_2|Z_1) = p_T(Z_2|Z_1), \quad p_S(Z_1) \neq p_T(Z_1)$$

We can use available supervision in S to infer $p_T(Z_2|Z_1)$.

After projection with $g = (g_1, g_2)$,

$$p_S(Z_2|Z_1) = p_T(Z_2|Z_1), \quad p_S(Z_1) \neq p_T(Z_1)$$

We can use available supervision in S to infer $p_T(Z_2|Z_1)$.

Covariate shift

After projection with $\hat{g} = (g_1, r \circ g_1)$, $p_S(Y|\hat{Z}) = p_T(Y|\hat{Z}), \quad p_S(\hat{Z}) \neq p_T(\hat{Z})$

After projection with $g = (g_1, g_2)$,

$$p_S(Z_2|Z_1) = p_T(Z_2|Z_1), \quad p_S(Z_1) \neq p_T(Z_1)$$

We can use available supervision in S to infer $p_T(Z_2|Z_1)$.

Covariate shift

After projection with
$$\hat{g} = (g_1, r \circ g_1)$$
,
 $p_S(Y|\hat{Z}) = p_T(Y|\hat{Z}), \quad p_S(\hat{Z}) \neq p_T(\hat{Z})$

We can find $\hat{h} = f \circ \hat{g}$ with low source and target error; common assumption for UDA.

After projection with $g = (g_1, g_2)$,

$$p_S(Z_2|Z_1) = p_T(Z_2|Z_1), \quad p_S(Z_1) \neq p_T(Z_1)$$

We can use available supervision in S to infer $p_T(Z_2|Z_1)$.

Covariate shift

After projection with $\hat{g} = (g_1, r \circ g_1)$, $p_S(Y|\hat{Z}) = p_T(Y|\hat{Z}), \quad p_S(\hat{Z}) \neq p_T(\hat{Z})$

We can find $\hat{h} = f \circ \hat{g}$ with low source and target error; common assumption for UDA.

Upper-bounds

Assumptions

Conditional invariance

After projection with $g = (g_1, g_2)$,

$$p_S(Z_2|Z_1) = p_T(Z_2|Z_1), \quad p_S(Z_1) \neq p_T(Z_1)$$

We can use available supervision in S to infer $p_T(Z_2|Z_1)$.

Covariate shift

After projection with $\hat{g} = (g_1, r \circ g_1)$, $p_S(Y|\hat{Z}) = p_T(Y|\hat{Z}), \quad p_S(\hat{Z}) \neq p_T(\hat{Z})$

We can find $\hat{h} = f \circ \hat{g}$ with low source and target error; common assumption for UDA.

Upper-bounds

• Adaptation upper-bound of the target error of \hat{h}

Assumptions

Conditional invariance

After projection with $g = (g_1, g_2)$,

$$p_S(Z_2|Z_1) = p_T(Z_2|Z_1), \quad p_S(Z_1) \neq p_T(Z_1)$$

We can use available supervision in S to infer $p_T(Z_2|Z_1)$.

Covariate shift

After projection with $\hat{g} = (g_1, r \circ g_1)$, $p_S(Y|\hat{Z}) = p_T(Y|\hat{Z}), \quad p_S(\hat{Z}) \neq p_T(\hat{Z})$

We can find $\hat{h} = f \circ \hat{g}$ with low source and target error; common assumption for UDA.

Upper-bounds

- Adaptation upper-bound of the target error of \hat{h}
- Imputation upper-bound of the target error of h

Upper-bounds

Adaptation upper-bound Ben-David et al. 2010

Given $f \in \mathcal{F}$ and \hat{g}

$$\epsilon_{\mathcal{T}}(f \circ \hat{g}) \leq \underbrace{\left[\epsilon_{\mathcal{S}}(f \circ \hat{g}) + d_{\mathcal{F}\Delta\mathcal{F}}(p_{\mathcal{S}}(\hat{Z}), p_{\mathcal{T}}(\hat{Z})) + \lambda_{\mathcal{H}_{\hat{g}}}\right]}_{(2)}$$

Domain Adaptation (DA)

$$\epsilon_{\mathcal{T}}(f \circ \hat{g}) \leq \underbrace{\left\lfloor \epsilon_{\mathcal{S}}(f \circ \hat{g}) + d_{\mathcal{F}\Delta\mathcal{F}}(p_{\mathcal{S}}(\hat{Z}), p_{\mathcal{T}}(\hat{Z})) + \lambda_{\mathcal{H}_{\hat{g}}} \right\rfloor}_{\text{Domain Adaptation (DA)}} (2$$

• $\epsilon_e(\cdot)$: expected error on $e \in \{S, T\}$

■ $d_{\mathcal{F}\Delta\mathcal{F}}$: $\mathcal{F}\Delta\mathcal{F}$ -divergence; $\mathcal{F}\Delta\mathcal{F}$: symmetric difference hypothesis space $h \in \mathcal{F}\Delta\mathcal{F} \iff \exists f_1, f_2 \in \mathcal{F}, h(x) = f_1(x) \oplus f_2(x)$

• $\lambda_{\mathcal{H}_{\hat{x}}}$: joint risk of the optimal hypothesis

$$\lambda_{\mathcal{H}_{\hat{m{g}}}} = \min_{f' \in \mathcal{F}} ig[\epsilon_{\mathcal{S}}(f' \circ \hat{m{g}}) + \epsilon_{\mathcal{T}}(f' \circ \hat{m{g}}) ig]$$

 $L_3 \rightarrow 1$ st term, $L_1 \rightarrow 2$ nd term, Covariate Shift $\rightarrow 3$ rd term small.

Upper-bounds

Imputation upper-bound

Under Conditional Invariance, given f, \hat{g} and g,

Upper-bounds

Imputation upper-bound

Under Conditional Invariance, given f, \hat{g} and g,

 $L_2
ightarrow (I_S), \ L_1
ightarrow (T_I), \ (DA)
ightarrow 3rd \ term.$

Experiments 0000

Experimental setting

- Full: full x_S and x_T .
- ZeroImputation: full x_S ; missing x_{T_2} set to 0, $x_T = (x_{T_1}, 0)$.

Baselines

- Full: full x_S and x_T.
- ZeroImputation: full x_S; missing x_{T_2} set to 0, $x_T = (x_{T_1}, 0)$.
- IgnoreComponent: only x_{S1}, x_{T1}; x_{S2}, x_{T2} ignored.

Baselines

- Full: full x_S and x_T .
- ZeroImputation: full x_S; missing x_{T_2} set to 0, $x_T = (x_{T_1}, 0)$.
- IgnoreComponent: only $x_{S_1}, x_{T_1}; x_{S_2}, x_{T_2}$ ignored.
- Imputation: full x_S ; missing x_{T_2} imputed.

Baselines

- Full: full x_S and x_T.
- ZeroImputation: full x_S; missing x_{T_2} set to 0, $x_T = (x_{T_1}, 0)$.
- IgnoreComponent: only $x_{S_1}, x_{T_1}; x_{S_2}, x_{T_2}$ ignored.
- Imputation: full x_S ; missing x_{T_2} imputed.
- Two divergences for aligning distributions:
 - *H*-divergence
 - Wasserstein distance

Baselines

- Full: full x_S and x_T .
- ZeroImputation: full x_S; missing x_{T_2} set to 0, $x_T = (x_{T_1}, 0)$.
- IgnoreComponent: only $x_{S_1}, x_{T_1}; x_{S_2}, x_{T_2}$ ignored.
- Imputation: full x_S ; missing x_{T_2} imputed.
- Two divergences for aligning distributions:
 - *H*-divergence
 - Wasserstein distance

Datasets and Metrics

Baselines

- Full: full x_S and x_T .
- ZeroImputation: full x_S; missing x_{T_2} set to 0, $x_T = (x_{T_1}, 0)$.
- IgnoreComponent: only $x_{S_1}, x_{T_1}; x_{S_2}, x_{T_2}$ ignored.
- Imputation: full x_S ; missing x_{T_2} imputed.
- Two divergences for aligning distributions:
 - *H*-divergence
 - Wasserstein distance

Datasets and Metrics

digits (missing half pixels): accuracy

Baselines

- Full: full x_S and x_T .
- ZeroImputation: full x_S ; missing x_{T_2} set to 0, $x_T = (x_{T_1}, 0)$.
- IgnoreComponent: only $x_{S_1}, x_{T_1}; x_{S_2}, x_{T_2}$ ignored.
- Imputation: full x_S ; missing x_{T_2} imputed.
- Two divergences for aligning distributions:
 - *H*-divergence
 - Wasserstein distance

Datasets and Metrics

- digits (missing half pixels): accuracy
- Amazon product reviews (missing half embeddings): accuracy

Baselines

- Full: full x_S and x_T .
- ZeroImputation: full x_S; missing x_{T_2} set to 0, $x_T = (x_{T_1}, 0)$.
- IgnoreComponent: only $x_{S_1}, x_{T_1}; x_{S_2}, x_{T_2}$ ignored.
- Imputation: full x_S ; missing x_{T_2} imputed.
- Two divergences for aligning distributions:
 - *H*-divergence
 - Wasserstein distance

Datasets and Metrics

- digits (missing half pixels): accuracy
- Amazon product reviews (missing half embeddings): accuracy
- challenging real-world advertising datasets¹: cross-entropy

¹ http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/

Results - Target accuracy (\uparrow) and Cross-Entropy (\downarrow)

Dataset	MNIST	\rightarrow USPS	USPS –	MNIST	SVHN –	> MNIST	$MNIST \rightarrow$	MNIST-M	ads-kaggle	ads-real
Model w/o R	ADV	OT	ADV	OT	ADV	OT	ADV	OT	ADV	ADV
Source-Full	71.5±2.7		74.2±2.7		58.1±1.1		28.3±1.4		NA	
Adaptation-Full	85.8±3.2	92.6±1.7	94.6±2.1	93.9±0.6	78.0±3.4	76.1±1.4	60.8±3.8	46.9±3.9	N	4
Source-ZeroImputation	25.7	±3.7	39.2	9.2±2.6 31.5		5±2.	14.4±1.1		0.545±0.019	0.663±0.011
Adaptation-ZeroImputation	48.4 ± 4.8	60.9±6.3	67.5±2.2	65.3±5.2	47.1±5.7	37.5±6.2	34.7±2.5	20.2 ± 2.5	0.397±0.0057	0.660 ± 0.025
Source-IgnoreComponent	52.9±9.7		54.3±1.6		44.6±1.9		19.1±2.6		0.406±0.00046	0.622±0.0048
Adaptation-IgnoreComponent	71.5±3.2	64.0±5.0	80.0±1.4	72.0±1.8	45.5±1.9	47.9±1.8	29.4±1.6	26.8±4.4	0.403±0.0030	0.634±0.0082
Adaptation-Imputation	74.2±2.3	66.8±1.3	81.4±0.8	72.5±2.7	53.8±1.4	49.2±1.5	57.9±2.3	29.2±1.4	0.389±0.014	0.583±0.013

Dataset	$\text{DVD} \rightarrow \text{Electronics}$	$Books \to Kitchen$	$Kitchen \rightarrow Electronics$	$\text{DVD} \rightarrow \text{Books}$
Source-Full	69.57	73.04	77.88	71.95
Adaptation-Full	73.62	74.09	79.63	72.65
Source-ZeroImputation	58.51	60.52	66.27	61.15
Adaptation-ZeroImputation	64.51	61.08	68.02	62.80
Source-IgnoreComponent	60.21	62.03	67.62	64.35
Adaptation-IgnoreComponent	61.02	64.08	68.47	66.00
Adaptation-Imputation	72.57	72.69	78.18	72.61

Conclusion

Our model improves representative baselines:

- on all our datasets
- for two alignment divergences

Experiments 0000

Conclusion of

References OC

Ablation studies - Model modules

Ablation study	ADV Model	$MNIST \rightarrow USPS$	$USPS \rightarrow MNIST$	$SVHN \rightarrow MNIST$	$MNIST \rightarrow MNIST-M$	ads-kaggle
$L_2 + L_3$ vs. $L_1 + L_2 + L_3$	$L = \lambda_2 L_2 + \lambda_3 L_3$	64.2±1.8 (-13%)	51.3±2.5 (-37%)	44.5±1.4 (-17%)	24.1±2.6 (-58%)	0.410±0.0020 (-5.4%)
	$L_2 = L_{MSE}$	71.9±3.7 (-3.1%)	81.4±1.2 (0%)	52.5±3.7 (-2.4%)	56.5±2.8 (-2.4%)	0.400±0.0014 (-2.8%)
ADV MOR and this - in f	$L_2 = L_{ADV}$	28.6±3.2 (-61%)	39.4±5.2 (-52%)	28.8±3.8 (-46%)	30.0±3.7 (-48%)	0.469±0.13 (-21%)
ADV-MSE weighting in L2	$L_2 = L_{ADV} + 0.005 \times L_{MSE}$	47.8±3.7 (-36%)	49.6±5.8 (-39%)	46.0±2.6 (-15%)	50.6±2.2 (-13%)	0.389±0.014 (0%)
	$L_2 = L_{ADV} + L_{MSE}$	74.2±2.3 (0%)	81.4±0.8 (0%)	53.8±1.4 (0%)	57.9±2.3 (0%)	0.401±0.0014 (-3.1%)
Ablation study	ADV Model	$DVD \rightarrow Electronics$	$Books \rightarrow Kitchen$	Kitchen \rightarrow Electronics	$DVD \rightarrow Books$	
ADV-MSE weighting in L_2	$L_2 = L_{MSE}$	71.47 (-1.5%)	71.39 (-1.8%)	77.58 (-0.77%)	72.02 (-0.81%)	-
	$L_2 = L_{ADV} + L_{MSE}$	72.57 (0%)	72.69 (0%)	78.18 (0%)	72.61 (0%)	

Figure 1: Adaptation-Imputation T CE () on ads-kaggle wrt λ_{MSE}

Conclusion

- L_1 is useful.
- L_{ADV} in L_2 is useful.

Conclusion

Problem

New end-to-end approach for non-stochastic missing data based on an adaptation-imputation problem.

Problem

New end-to-end approach for non-stochastic missing data based on an adaptation-imputation problem.

Theory

Clear assumptions and upper-bounds minimized by our model.

Problem

New end-to-end approach for non-stochastic missing data based on an adaptation-imputation problem.

Theory

Clear assumptions and upper-bounds minimized by our model.

Experiments

Superior performance over representative baselines on real-world datasets with extremely different characteristics.

Thank you for your attention !

Code: https://github.com/mkirchmeyer/adaptation-imputation **Contact information**:

Matthieu Kirchmeyer: matthieu.kirchmeyer@gmail.com

References

Ben-David, Shai et al. (2010). "A theory of learning from different domains". In: *Machine Learning* 79.1, pp. 151–175.

Rubin, Donald B. (Dec. 1976). "Inference and missing data". In: *Biometrika* 63.3, pp. 581–592.