UNSUPERVISED DOMAIN
 ADAPTATION WITH NONSTOCHASTIC MISSING DATA

 ECML 2021 - Data Mining and Knowledge DiscoveryMonday $13^{\text {th }}$ September, 2021 to Friday $17^{\text {th }}$ September, 2021
Matthieu Kirchmeyer ${ }^{1,2}$, Patrick Gallinari ${ }^{1,2}$, Alain Rakotomamonjy ${ }^{2,3}$, Amin Mantrach ${ }^{4}$
${ }^{1}$ Sorbonne Université, CNRS, LIP6, ${ }^{2}$ Criteo AI Lab, ${ }^{3}$ Université de Rouen - LITIS, ${ }^{4}$ Amazon

Introduction

- Missing data is present in many real-world applications.

Missing data

- Missing data is present in many real-world applications.

Missing data

■ Missing data is present in many real-world applications.

MRI Modality

Missing data

－Missing data is present in many real－world applications．

MRI Modality

為楽在他，為豆在己。為槚在他，為之與㒒，詂之與講。故之與右，諾之者言，依於博，與博者言，依於解。劳。與富者言，依於豪。與省者言言，依於說。此言之術也。不用在早非所宜為，勿為以避其危。非所宜取避其緊。一登而非，䢂馬刎追。一言語不留耳。此謂君子也。夫任臣之法親也，勇則不近也，信則不信也。不

6．124 The propositions of rather they represent it． that names have meaning a their connexion with the must be indicated by the essence involves the poss tautologies．This contain： things are arbitrary in t not．In logic it is only is not a field in which w

Missing data

－Missing data is present in many real－world applications．

IS Ultra－Compact Binoculars		Tongass National Forest Map	
Lightweight and powerful， the ultra－compact 10×30 Image Stabilization Binoculars delivers（．．．）	Detailed Map Of Prince of Wales Island in Tongass National Forest．This Map is detailed（．．．）		
＂Excellent Optics．＂			

（c）

6．124 The propositions of rather they represent it． that names have meaning a their connexion with the must be indicated by the essence involves the poss tautologies．This contain： things are arbitrary in ti not．In logic it is only is not a field in which w

為楽在他，為喜在己。為啊在他，為之與潢，谢之與詵。故之與右，諾之者言，依於博，與博者言，依於颜。劣。與富者言，依於亭。與真者言，言，依於說。此言之術也，不用在早非所宜為，勿為以避其危。非所宜取避其緊。一登而非，眴馬勿追。一言語不留耳，此謂君子也。夫任臣之法親也，勇則不近也，信則不信也。不

Missing data

■ Missing data is present in many real－world applications．

為楽在他，為喜在己。為颔在他，為之與挜，谢之與議。故之與右，諾之者言，依於博，與博者言，依於颜。募。與富者言，依於豪，與資者言，言，依於說，此言之術也。不用在早非所宜為，勿為以避其危。非所宜取避其緊。一登而非，眴馬勿追。一言語不留耳。此調君子也。夫任臣之法親也，勇則不近也，信則不信也。不

6．124 The propositions of rather they represent it． that names have meaning a their connexion with the must be indicated by the essence involves the poss tautologies．This contain： things are arbitrary in tl not．In logic it is only is not a field in which w

（c）
（d）

■ Existing methods usually consider stochastic missing data．

Missing data

■ Missing data is present in many real－world applications．

為楽在他，為咅在已。為呵在他，為之與满，謝之與鈊。故之與右，諾之者言，依於溥，與搏者言，依施解。䴖。與富者言，依於豪。與資者言，言，依枪說，此言之衡也。不用在早非所宜為，勿為以避其㕣。非所宜取避其堅。一登而非，眴馬勿追。一言語不留耳，此請君子也。夫任臣之法親也，勇則不近也，信則不信也。不

6．124 The propositions of rather they represent it． that names have meaning a their connexion with the must be indicated by the essence involves the posst tautologies．This contain： things are arbitrary in tl not．In logic it is only is not a field in which wh

（c）
（d）

■ Existing methods usually consider stochastic missing data．
－Missing Completely At Random（MCAR）Rubin 1976

$$
\forall x, p_{\phi}(\mathrm{m} \mid \mathrm{x})=p_{\phi}(\mathrm{m})
$$

m stochastic．

Non-stochastic missing data

■ MCAR when m is deterministic, a.k.a. non-stochastic missing data, is seldom considered.

■ MCAR when m is deterministic, a.k.a. non-stochastic missing data, is seldom considered.

■ Yet, common in applications e.g. cold-start

Non-stochastic missing data

■ MCAR when m is deterministic, a.k.a. non-stochastic missing data, is seldom considered.

■ Yet, common in applications e.g. cold-start

Non-stochastic missing data

■ MCAR when m is deterministic, a.k.a. non-stochastic missing data, is seldom considered.
■ Yet, common in applications e.g. cold-start

Contributions

- Handle non-stochastic missing data with unsupervised domain adaptation (UDA).

■ MCAR when m is deterministic, a.k.a. non-stochastic missing data, is seldom considered.
■ Yet, common in applications e.g. cold-start

Contributions

- Handle non-stochastic missing data with unsupervised domain adaptation (UDA).
Formalize the problem.

1 labelled x_{S} and unlabelled x_{T} under distribution shift.

Source domain
Full and labelled

Target domain
Missing and unlabelled

1 labelled x_{S} and unlabelled x_{T} under distribution shift.
$2 \mathrm{x}_{\mathrm{e}}=\left(\mathrm{x}_{\mathrm{e}_{1}}, \mathrm{x}_{\mathrm{e}_{2}}\right), e \in\{S, T\}$ with x_{S} fully observed; $\mathrm{x}_{\mathrm{T}_{2}}$ missing.

Source domain

Full and labelled

Target domain
Missing and unlabelled

11 labelled x_{S} and unlabelled x_{T} under distribution shift.
$2 \mathrm{x}_{\mathrm{e}}=\left(\mathrm{x}_{\mathrm{e}_{1}}, \mathrm{x}_{\mathrm{e}_{2}}\right), e \in\{S, T\}$ with x_{S} fully observed; $\mathrm{x}_{\mathrm{T}_{2}}$ missing.
(1), (2) \rightarrow UDA under non-stochastic missingness.

Source domain
Full and labelled

Target domain
Missing and unlabelled

1 labelled x_{S} and unlabelled x_{T} under distribution shift.
$2 \mathrm{x}_{\mathrm{e}}=\left(\mathrm{x}_{\mathrm{e}_{1}}, \mathrm{x}_{\mathrm{e}_{2}}\right), e \in\{S, T\}$ with x_{S} fully observed; $\mathrm{x}_{\mathrm{T}_{2}}$ missing.
3 no supervision for imputation on T.
(1), (2) \rightarrow UDA under non-stochastic missingness.
(3) \rightarrow imputation without supervision.

Source domain
Full and labelled

Target domain
Missing and unlabelled

1 labelled x_{S} and unlabelled x_{T} under distribution shift.
$2 \mathrm{x}_{\mathrm{e}}=\left(\mathrm{x}_{\mathrm{e}_{1}}, \mathrm{x}_{\mathrm{e}_{2}}\right), e \in\{S, T\}$ with x_{S} fully observed; $\mathrm{x}_{\mathrm{T}_{2}}$ missing.
3 no supervision for imputation on T.
(1), (2) \rightarrow UDA under non-stochastic missingness.
(3) \rightarrow imputation without supervision.

Source domain
Full and labelled

Target domain
Missing and unlabelled

Goal: train a classifier \hat{h} with low classification error on T.

Model

Model components

Model: $\hat{h}: \mathcal{X}_{1} \rightarrow \mathcal{Y}=\{0, \ldots, K\}, \hat{h}=f \circ \hat{g}$ on \mathbf{S} and \mathbf{T}

Model components

Model: $\hat{h}: \mathcal{X}_{1} \rightarrow \mathcal{Y}=\{0, \ldots, K\}, \hat{h}=f \circ \hat{g}$ on \mathbf{S} and \mathbf{T}

- $\hat{g}: \mathcal{X}_{1} \rightarrow \mathcal{Z}=\left(\mathcal{Z}_{1}, \mathcal{Z}_{2}\right)$ encoder using $\mathrm{X}_{\mathrm{e}_{1}}$.

Model components

Model: $\hat{h}: \mathcal{X}_{1} \rightarrow \mathcal{Y}=\{0, \ldots, K\}, \hat{h}=f \circ \hat{g}$ on \mathbf{S} and \mathbf{T}

- $\hat{g}: \mathcal{X}_{1} \rightarrow \mathcal{Z}=\left(\mathcal{Z}_{1}, \mathcal{Z}_{2}\right)$ encoder using $x_{e_{1}}$.
- $g_{1}: \mathcal{X}_{1} \rightarrow \mathcal{Z}_{1}$ encoder of $\mathrm{X}_{\mathrm{e}_{1}}$.

Model components

Model: $\hat{h}: \mathcal{X}_{1} \rightarrow \mathcal{Y}=\{0, \ldots, K\}, \hat{h}=f \circ \hat{g}$ on \mathbf{S} and \mathbf{T}

- $\hat{g}: \mathcal{X}_{1} \rightarrow \mathcal{Z}=\left(\mathcal{Z}_{1}, \mathcal{Z}_{2}\right)$ encoder using $x_{e_{1}}$.
- $g_{1}: \mathcal{X}_{1} \rightarrow \mathcal{Z}_{1}$ encoder of $\mathrm{X}_{\mathrm{e}_{1}}$.
- $r: \mathcal{Z}_{1} \rightarrow \mathcal{Z}_{2}$ conditional generator of $\mathrm{z}_{\mathrm{e}_{2}}$ given $\mathrm{z}_{\mathrm{e}_{1}}$.

Model components

Model: $\hat{h}: \mathcal{X}_{1} \rightarrow \mathcal{Y}=\{0, \ldots, K\}, \hat{h}=f \circ \hat{g}$ on \mathbf{S} and \mathbf{T}

- $\hat{g}: \mathcal{X}_{1} \rightarrow \mathcal{Z}=\left(\mathcal{Z}_{1}, \mathcal{Z}_{2}\right)$ encoder using $\mathrm{x}_{\mathrm{e}_{1}}$.
- $g_{1}: \mathcal{X}_{1} \rightarrow \mathcal{Z}_{1}$ encoder of $\mathrm{X}_{\mathrm{e}_{1}}$.
- $r: \mathcal{Z}_{1} \rightarrow \mathcal{Z}_{2}$ conditional generator of $\mathrm{z}_{\mathrm{e}_{2}}$ given $\mathrm{z}_{\mathrm{e}_{1}}$.
- $f: \mathcal{Z} \rightarrow \mathcal{Y}=\{0, \ldots, K\}$ classifier.

Model components

Model: $\hat{h}: \mathcal{X}_{1} \rightarrow \mathcal{Y}=\{0, \ldots, K\}, \hat{h}=f \circ \hat{g}$ on \mathbf{S} and \mathbf{T}

- $\hat{g}: \mathcal{X}_{1} \rightarrow \mathcal{Z}=\left(\mathcal{Z}_{1}, \mathcal{Z}_{2}\right)$ encoder using $\mathrm{x}_{\mathrm{e}_{1}}$.
- $g_{1}: \mathcal{X}_{1} \rightarrow \mathcal{Z}_{1}$ encoder of $\mathrm{x}_{\mathrm{e}_{1}}$.
- $r: \mathcal{Z}_{1} \rightarrow \mathcal{Z}_{2}$ conditional generator of $\mathrm{z}_{\mathrm{e}_{2}}$ given $\mathrm{z}_{\mathrm{e}_{1}}$.
- $f: \mathcal{Z} \rightarrow \mathcal{Y}=\{0, \ldots, K\}$ classifier.

Reference: $h: \mathcal{X} \rightarrow \mathcal{Y}, h=f \circ g$ only on \mathbf{S}

- $g: \mathcal{X}_{1} \times \mathcal{X}_{2} \rightarrow \mathcal{Z}$ encoder with both ($\left(\mathrm{e}_{\mathrm{e}_{1}}, \mathrm{x}_{\mathrm{e}_{2}}\right)$ components.
- $g_{2}: \mathcal{X}_{2} \rightarrow \mathcal{Z}_{2}$ encoder of $\mathrm{x}_{\mathrm{e}_{2}}$.

Model training

Adversarial training

Three modules for imputation, adaptation, classification.

Model training

Adversarial training

■ Imputation: alignment loss $L_{2}=L_{A D V}+\lambda_{M S E} L_{M S E}$.

Model training

Adversarial training

- Adaptation: alignment loss L_{1}.

Model training

Adversarial training

- Classification: cross-entropy loss L_{3}.

Model training

$$
\begin{equation*}
\min _{g_{1}, g_{\mathbf{2}}, r, f} \max _{D_{\mathbf{1}}, D_{\mathbf{2}}} L_{1}+\left(L_{A D V}+\lambda_{M S E} L_{M S E}\right)+L_{3} \tag{1}
\end{equation*}
$$

Formalization

Assumptions

Conditional invariance
After projection with $g=\left(g_{1}, g_{2}\right)$,

$$
p_{S}\left(Z_{2} \mid Z_{1}\right)=p_{T}\left(Z_{2} \mid Z_{1}\right), \quad p_{S}\left(Z_{1}\right) \neq p_{T}\left(Z_{1}\right)
$$

Assumptions

Conditional invariance

After projection with $g=\left(g_{1}, g_{2}\right)$,

$$
p_{S}\left(Z_{2} \mid Z_{1}\right)=p_{T}\left(Z_{2} \mid Z_{1}\right), \quad p_{S}\left(Z_{1}\right) \neq p_{T}\left(Z_{1}\right)
$$

We can use available supervision in S to infer $p_{T}\left(Z_{2} \mid Z_{1}\right)$.

Assumptions

Conditional invariance

After projection with $g=\left(g_{1}, g_{2}\right)$,

$$
p_{S}\left(Z_{2} \mid Z_{1}\right)=p_{T}\left(Z_{2} \mid Z_{1}\right), \quad p_{S}\left(Z_{1}\right) \neq p_{T}\left(Z_{1}\right)
$$

We can use available supervision in S to infer $p_{T}\left(Z_{2} \mid Z_{1}\right)$.

Covariate shift

After projection with $\hat{g}=\left(g_{1}, r \circ g_{1}\right)$,

$$
p_{S}(Y \mid \hat{Z})=p_{T}(Y \mid \hat{Z}), \quad p_{S}(\hat{Z}) \neq p_{T}(\hat{Z})
$$

Assumptions

Conditional invariance

After projection with $g=\left(g_{1}, g_{2}\right)$,

$$
p_{S}\left(Z_{2} \mid Z_{1}\right)=p_{T}\left(Z_{2} \mid Z_{1}\right), \quad p_{S}\left(Z_{1}\right) \neq p_{T}\left(Z_{1}\right)
$$

We can use available supervision in S to infer $p_{T}\left(Z_{2} \mid Z_{1}\right)$.

Covariate shift

After projection with $\hat{g}=\left(g_{1}, r \circ g_{1}\right)$,

$$
p_{S}(Y \mid \hat{Z})=p_{T}(Y \mid \hat{Z}), \quad p_{S}(\hat{Z}) \neq p_{T}(\hat{Z})
$$

We can find $\hat{h}=f \circ \hat{g}$ with low source and target error; common assumption for UDA.

Assumptions

Conditional invariance

After projection with $g=\left(g_{1}, g_{2}\right)$,

$$
p_{S}\left(Z_{2} \mid Z_{1}\right)=p_{T}\left(Z_{2} \mid Z_{1}\right), \quad p_{S}\left(Z_{1}\right) \neq p_{T}\left(Z_{1}\right)
$$

We can use available supervision in S to infer $p_{T}\left(Z_{2} \mid Z_{1}\right)$.

Covariate shift

After projection with $\hat{g}=\left(g_{1}, r \circ g_{1}\right)$,

$$
p_{S}(Y \mid \hat{Z})=p_{T}(Y \mid \hat{Z}), \quad p_{S}(\hat{Z}) \neq p_{T}(\hat{Z})
$$

We can find $\hat{h}=f \circ \hat{g}$ with low source and target error; common assumption for UDA.

Upper-bounds

Assumptions

Conditional invariance

After projection with $g=\left(g_{1}, g_{2}\right)$,

$$
p_{S}\left(Z_{2} \mid Z_{1}\right)=p_{T}\left(Z_{2} \mid Z_{1}\right), \quad p_{S}\left(Z_{1}\right) \neq p_{T}\left(Z_{1}\right)
$$

We can use available supervision in S to infer $p_{T}\left(Z_{2} \mid Z_{1}\right)$.

Covariate shift

After projection with $\hat{g}=\left(g_{1}, r \circ g_{1}\right)$,

$$
p_{S}(Y \mid \hat{Z})=p_{T}(Y \mid \hat{Z}), \quad p_{S}(\hat{Z}) \neq p_{T}(\hat{Z})
$$

We can find $\hat{h}=f \circ \hat{g}$ with low source and target error; common assumption for UDA.

Upper-bounds

- Adaptation upper-bound of the target error of \hat{h}

Assumptions

Conditional invariance

After projection with $g=\left(g_{1}, g_{2}\right)$,

$$
p_{S}\left(Z_{2} \mid Z_{1}\right)=p_{T}\left(Z_{2} \mid Z_{1}\right), \quad p_{S}\left(Z_{1}\right) \neq p_{T}\left(Z_{1}\right)
$$

We can use available supervision in S to infer $p_{T}\left(Z_{2} \mid Z_{1}\right)$.

Covariate shift

After projection with $\hat{g}=\left(g_{1}, r \circ g_{1}\right)$,

$$
p_{S}(Y \mid \hat{Z})=p_{T}(Y \mid \hat{Z}), \quad p_{S}(\hat{Z}) \neq p_{T}(\hat{Z})
$$

We can find $\hat{h}=f \circ \hat{g}$ with low source and target error; common assumption for UDA.

Upper-bounds

- Adaptation upper-bound of the target error of \hat{h}
- Imputation upper-bound of the target error of h

Upper-bounds

Adaptation upper-bound Ben-David et al. 2010

Given $f \in \mathcal{F}$ and \hat{g}

$$
\begin{equation*}
\epsilon_{T}(f \circ \hat{g}) \leq \underbrace{\left[\epsilon_{S}(f \circ \hat{g})+d_{\mathcal{F} \Delta \mathcal{F}}\left(p_{S}(\hat{Z}), p_{T}(\hat{Z})\right)+\lambda_{\mathcal{H}_{\hat{g}}}\right]}_{\text {Domain Adaptation (DA) }} \tag{2}
\end{equation*}
$$

Upper-bounds

Adaptation upper-bound Ben-David et al. 2010

Given $f \in \mathcal{F}$ and \hat{g}

$$
\begin{equation*}
\epsilon_{T}(f \circ \hat{g}) \leq \underbrace{\left[\epsilon_{S}(f \circ \hat{g})+d_{\mathcal{F} \Delta \mathcal{F}}\left(p_{S}(\hat{Z}), p_{T}(\hat{Z})\right)+\lambda_{\mathcal{H}_{\hat{g}}}\right]}_{\text {Domain Adaptation (DA) }} \tag{2}
\end{equation*}
$$

- $\epsilon_{e}(\cdot):$ expected error on $e \in\{S, T\}$

Upper-bounds

Adaptation upper-bound Ben-David et al. 2010

Given $f \in \mathcal{F}$ and \hat{g}

$$
\begin{equation*}
\epsilon_{T}(f \circ \hat{g}) \leq \underbrace{\left[\epsilon_{S}(f \circ \hat{g})+d_{\mathcal{F} \Delta \mathcal{F}}\left(p_{S}(\hat{Z}), p_{T}(\hat{Z})\right)+\lambda_{\mathcal{H}_{\hat{g}}}\right]}_{\text {Domain Adaptation (DA) }} \tag{2}
\end{equation*}
$$

- $\epsilon_{e}(\cdot)$: expected error on $e \in\{S, T\}$
- $d_{\mathcal{F} \Delta \mathcal{F}}: \mathcal{F} \Delta \mathcal{F}$-divergence; $\mathcal{F} \Delta \mathcal{F}$: symmetric difference hypothesis space $h \in \mathcal{F} \Delta \mathcal{F} \Longleftrightarrow \exists f_{1}, f_{2} \in \mathcal{F}, h(x)=f_{1}(x) \oplus f_{2}(x)$

Upper-bounds

Adaptation upper-bound Ben-David et al. 2010

Given $f \in \mathcal{F}$ and \hat{g}

$$
\begin{equation*}
\epsilon_{T}(f \circ \hat{g}) \leq \underbrace{\left[\epsilon_{S}(f \circ \hat{g})+d_{\mathcal{F} \Delta \mathcal{F}}\left(p_{S}(\hat{Z}), p_{T}(\hat{Z})\right)+\lambda_{\mathcal{H}_{\hat{g}}}\right]}_{\text {Domain Adaptation (DA) }} \tag{2}
\end{equation*}
$$

- $\epsilon_{e}(\cdot)$: expected error on $e \in\{S, T\}$
- $d_{\mathcal{F} \Delta \mathcal{F}}: \mathcal{F} \Delta \mathcal{F}$-divergence; $\mathcal{F} \Delta \mathcal{F}$: symmetric difference hypothesis space $h \in \mathcal{F} \Delta \mathcal{F} \Longleftrightarrow \exists f_{1}, f_{2} \in \mathcal{F}, h(x)=f_{1}(x) \oplus f_{2}(x)$
- $\lambda_{\mathcal{H}_{\hat{g}}}$: joint risk of the optimal hypothesis

$$
\lambda_{\mathcal{H}_{\hat{\mathrm{g}}}}=\min _{f^{\prime} \in \mathcal{F}}\left[\epsilon_{S}\left(f^{\prime} \circ \hat{g}\right)+\epsilon_{T}\left(f^{\prime} \circ \hat{g}\right)\right]
$$

Upper-bounds

Adaptation upper-bound Ben-David et al. 2010

Given $f \in \mathcal{F}$ and \hat{g}

$$
\begin{equation*}
\epsilon_{T}(f \circ \hat{g}) \leq \underbrace{\left[\epsilon_{S}(f \circ \hat{g})+d_{\mathcal{F} \Delta \mathcal{F}}\left(p_{S}(\hat{Z}), p_{T}(\hat{Z})\right)+\lambda_{\mathcal{H}_{\hat{\mathrm{g}}}}\right]}_{\text {Domain Adaptation (DA) }} \tag{2}
\end{equation*}
$$

- $\epsilon_{e}(\cdot)$: expected error on $e \in\{S, T\}$
- $d_{\mathcal{F} \Delta \mathcal{F}}: \mathcal{F} \Delta \mathcal{F}$-divergence; $\mathcal{F} \Delta \mathcal{F}$: symmetric difference hypothesis space $h \in \mathcal{F} \Delta \mathcal{F} \Longleftrightarrow \exists f_{1}, f_{2} \in \mathcal{F}, h(x)=f_{1}(x) \oplus f_{2}(x)$
- $\lambda_{\mathcal{H}_{\hat{g}}}$: joint risk of the optimal hypothesis

$$
\lambda_{\mathcal{H}_{\hat{\mathrm{g}}}}=\min _{f^{\prime} \in \mathcal{F}}\left[\epsilon_{S}\left(f^{\prime} \circ \hat{g}\right)+\epsilon_{T}\left(f^{\prime} \circ \hat{g}\right)\right]
$$

$L_{3} \rightarrow$ 1st term, $L_{1} \rightarrow$ 2nd term, Covariate Shift \rightarrow 3rd term small.

Upper-bounds

Imputation upper-bound

Under Conditional Invariance, given f, \hat{g} and g,

$$
\begin{align*}
\epsilon_{T}(f \circ g) & \leq \underbrace{\sup _{\mathrm{z} \sim p(Z)}\left[\frac{p_{S}\left(Z_{2}=\mathrm{z}_{2} \mid \mathrm{z}_{1}\right)}{p_{S}\left(\hat{Z}_{2}=\mathrm{z}_{2} \mid \mathrm{z}_{1}\right)}\right]}_{\text {Imputation error on T }\left(I_{T}\right)} \times \underbrace{\sup _{\mathrm{z} \sim p(Z)}\left[\frac{p_{S}\left(\hat{Z}_{2}=\mathrm{z}_{2} \mid \mathrm{z}_{1}\right)}{p_{T}\left(\hat{Z}_{2}=\mathrm{z}_{2} \mid \mathrm{z}_{1}\right)}\right]}_{\text {Tratation error on S }\left(I_{S}\right)} \\
& \times \epsilon_{T}(f \circ \hat{g}) \tag{3}
\end{align*}
$$

Upper-bounds

Imputation upper-bound

Under Conditional Invariance, given f, \hat{g} and g,

$$
\begin{align*}
\epsilon_{T}(f \circ g) \leq & \underbrace{\sup _{z \sim p(Z)}\left[\frac{p_{S}\left(Z_{2}=z_{2} \mid z_{1}\right)}{p_{S}\left(\hat{Z}_{2}=z_{2} \mid z_{1}\right)}\right]}_{\text {Imputation error on } \mathrm{S}\left(I_{S}\right)} \times \underbrace{\sup _{\text {Transfer error of Imputation }\left(T_{I}\right)}\left[\frac{p_{S}\left(\hat{Z}_{2}=z_{2} \mid z_{1}\right)}{p_{T}\left(\hat{Z}_{2}=p(Z) z_{2} \mid z_{1}\right)}\right]}_{\text {Imputation error on } \mathrm{T}\left(I_{T}\right)} \\
& \times \epsilon_{T}(f \circ \hat{g}) \tag{3}\\
& L_{2} \rightarrow\left(I_{S}\right), L_{1} \rightarrow\left(T_{I}\right),(D A) \rightarrow \text { 3rd term. }
\end{align*}
$$

Experiments

Experimental setting

Baselines

Experimental setting

Baselines

- Full: full X_{S} and x_{T}.

Experimental setting

Baselines

- Full: full x_{S} and x_{T}.
- ZeroImputation: full x_{S}; missing $\mathrm{X}_{\mathrm{T}_{2}}$ set to $0, \mathrm{x}_{\mathrm{T}}=\left(\mathrm{x}_{\mathrm{T}_{1}}, \mathbf{0}\right)$.

Experimental setting

Baselines

- Full: full x_{S} and X_{T}.
- ZeroImputation: full x_{S}; missing $x_{T_{2}}$ set to $0, x_{T}=\left(x_{T_{1}}, 0\right)$.

■ IgnoreComponent: only $\mathrm{X}_{S_{1}}, \mathrm{x}_{\mathrm{T}_{1}} ; \mathrm{X}_{S_{2}}, \mathrm{X}_{\mathrm{T}_{2}}$ ignored.

Experimental setting

Baselines

- Full: full x_{S} and X_{T}.
- ZeroImputation: full x_{S}; missing $\mathrm{X}_{\mathrm{T}_{2}}$ set to $0, \mathrm{X}_{\mathrm{T}}=\left(\mathrm{X}_{\mathrm{T}_{1}}, \mathbf{0}\right)$.

■ IgnoreComponent: only $\mathrm{X}_{S_{1}}, \mathrm{x}_{\mathrm{T}_{1}} ; \mathrm{X}_{S_{2}}, \mathrm{X}_{\mathrm{T}_{2}}$ ignored.

- Imputation: full x_{S}; missing $\mathrm{X}_{\mathrm{T}_{2}}$ imputed.

Experimental setting

Baselines

- Full: full x_{S} and X_{T}.
- ZeroImputation: full x_{S}; missing $x_{T_{2}}$ set to $0, x_{T}=\left(x_{T_{1}}, 0\right)$.

■ IgnoreComponent: only $\mathrm{X}_{S_{1}}, \mathrm{x}_{\mathrm{T}_{1}} ; \mathrm{X}_{S_{2}}, \mathrm{X}_{\mathrm{T}_{2}}$ ignored.

- Imputation: full x_{S}; missing $X_{T_{2}}$ imputed.
- Two divergences for aligning distributions:
- \mathcal{H}-divergence
- Wasserstein distance

Experimental setting

Baselines

- Full: full x_{S} and X_{T}.
- ZeroImputation: full x_{S}; missing $x_{T_{2}}$ set to $0, x_{T}=\left(x_{T_{1}}, 0\right)$.
- IgnoreComponent: only $\mathrm{x}_{S_{1}}, \mathrm{x}_{\mathrm{T}_{1}} ; \mathrm{x}_{\mathrm{S}_{2}}, \mathrm{x}_{\mathrm{T}_{2}}$ ignored.
- Imputation: full x_{S}; missing $x_{T_{2}}$ imputed.
- Two divergences for aligning distributions:
- \mathcal{H}-divergence
- Wasserstein distance

Datasets and Metrics

Experimental setting

Baselines

- Full: full x_{S} and x_{T}.
- ZeroImputation: full x_{S}; missing $x_{T_{2}}$ set to $0, x_{T}=\left(x_{T_{1}}, 0\right)$.

■ IgnoreComponent: only $\mathrm{x}_{S_{1}}, \mathrm{x}_{\mathrm{T}_{1}} ; \mathrm{x}_{2}, \mathrm{x}_{\mathrm{T}_{2}}$ ignored.

- Imputation: full x_{S}; missing $x_{T_{2}}$ imputed.
- Two divergences for aligning distributions:
- \mathcal{H}-divergence
- Wasserstein distance

Datasets and Metrics

- digits (missing half pixels): accuracy

Experimental setting

Baselines

- Full: full x_{S} and X_{T}.
- ZeroImputation: full x_{S}; missing $x_{T_{2}}$ set to $0, x_{T}=\left(x_{T_{1}}, 0\right)$.

■ IgnoreComponent: only $\mathrm{x}_{S_{1}}, \mathrm{x}_{\mathrm{T}_{1}} ; \mathrm{x}_{2}, \mathrm{x}_{\mathrm{T}_{2}}$ ignored.

- Imputation: full x_{S}; missing $x_{T_{2}}$ imputed.
- Two divergences for aligning distributions:
- \mathcal{H}-divergence
- Wasserstein distance

Datasets and Metrics

- digits (missing half pixels): accuracy
- Amazon product reviews (missing half embeddings): accuracy

Experimental setting

Baselines

- Full: full x_{S} and X_{T}.
- ZeroImputation: full x_{S}; missing $x_{T_{2}}$ set to $0, x_{T}=\left(x_{T_{1}}, 0\right)$.

■ IgnoreComponent: only $\mathrm{X}_{S_{1}}, \mathrm{X}_{\mathrm{T}_{1}} ; \mathrm{x}_{\mathrm{S}_{2}}, \mathrm{x}_{\mathrm{T}_{2}}$ ignored.

- Imputation: full x_{S}; missing $X_{T_{2}}$ imputed.
- Two divergences for aligning distributions:
- \mathcal{H}-divergence
- Wasserstein distance

Datasets and Metrics

- digits (missing half pixels): accuracy
- Amazon product reviews (missing half embeddings): accuracy
- challenging real-world advertising datasets ${ }^{1}$: cross-entropy

[^0]
Results - Target accuracy (\uparrow) and Cross-Entropy (\downarrow)

Dataset	MNIST \rightarrow USPS		USPS \rightarrow MNIST		SVHN \rightarrow MNIST		MNIST \rightarrow MNIST-M		ads-kaggle	ads-real
Model w/o \mathscr{R}	ADV	OT	ADV	OT	ADV	OT	ADV	OT	ADV	ADV
Source-Full	71.5 ± 2.7		74.2 ± 2.7		58.1 ± 1.1		28.3 ± 1.4		NA	
Adaptation-Full	85.8 ± 3.2	92.6 ± 1.7	94.6 ± 2.1	93.9 ± 0.6	78.0 ± 3.4	76.1 ± 1.4	60.8 ± 3.8	46.9 ± 3.9		
Source-ZeroImputation	25.7 ± 3.7		39.2 ± 2.6		31.5 ± 2.		14.4 ± 1.1		0.545 ± 0.019	0.663 ± 0.011
Adaptation-ZeroImputation	48.4 ± 4.8	60.9 ± 6.3	67.5 ± 2.2	65.3 ± 5.2	47.1 ± 5.7	37.5 ± 6.2	34.7 ± 2.5	20.2 ± 2.5	0.397 ± 0.0057	0.660 ± 0.025
Source-IgnoreComponent	52.9 ± 9.7		54.3 ± 1.6		44.6 ± 1.9		19.1 ± 2.6		0.406 ± 0.00046	0.622 ± 0.0048
Adaptation-IgnoreComponent	$71.5+3.2$	64.0 ± 5.0	80.0 ± 1.4	72.0 ± 1.8	45.5 ± 1.9	47.9 ± 1.8	29.4 ± 1.6	26.8 ± 4.4	0.403 ± 0.0030	0.634 ± 0.0082
Adaptation-Imputation	74.2 ± 2.3	66.8 ± 1.3	$\mathbf{8 1 . 4} \pm \mathbf{0 . 8}$	72.5 ± 2.7	53.8 ± 1.4	49.2 ± 1.5	57.9 ± 2.3	29.2 ± 1.4	$\mathbf{0 . 3 8 9} \pm 0.014$	$\mathbf{0 . 5 8 3} \pm 0.013$

Dataset	DVD \rightarrow Electronics	Books \rightarrow Kitchen	Kitchen \rightarrow Electronics	DVD \rightarrow Books
Source-Full	69.57	73.04	77.88	71.95
Adaptation-Full	73.62	74.09	79.63	72.65
Source-ZeroImputation	58.51	60.52	66.27	61.15
Adaptation-ZeroImputation	64.51	61.08	68.02	62.80
Source-IgnoreComponent	60.21	62.03	67.62	64.35
Adaptation-IgnoreComponent	61.02	64.08	68.47	66.00
Adaptation-Imputation	$\mathbf{7 2 . 5 7}$	$\mathbf{7 2 . 6 9}$	$\mathbf{7 8 . 1 8}$	$\mathbf{7 2 . 6 1}$

Conclusion

Our model improves representative baselines:

- on all our datasets
- for two alignment divergences

Ablation studies - Model modules

Ablation study	ADV Model	MNIST \rightarrow USPS	USPS \rightarrow MNIST	SVHN \rightarrow MNIST	MNIST \rightarrow MNIST-M	ads-kaggle
$L_{2}+L_{3}$ vs. $L_{1}+L_{2}+L_{3}$	$L=\lambda_{2} L_{2}+\lambda_{3} L_{3}$	$64.2 \pm 1.8(-13 \%)$	$51.3 \pm 2.5(-37 \%)$	$44.5 \pm 1.4(-17 \%)$	24.1 ± 2.6 (-58\%)	0.410 ± 0.0020 (-5.4\%)
ADV-MSE weighting in L_{2}	$L_{2}=L_{M S E}$	71.9 ± 3.7 (-3.1\%)	81.4 ± 1.2 (0\%)	$52.5 \pm 3.7(-2.4 \%)$	56.5 ± 2.8 (-2.4\%)	$0.400 \pm 0.0014(-2.8 \%)$
	$L_{2}=L_{\text {ADV }}$	$28.6 \pm 3.2(-61 \%)$	$39.4 \pm 5.2(-52 \%)$	28.8 ± 3.8 (-46\%)	$30.0 \pm 3.7(-48 \%)$	0.469 ± 0.13 (-21\%)
	$L_{2}=L_{A D V}+0.005 \times L_{M S E}$	$47.8 \pm 3.7(-36 \%)$	$49.6 \pm 5.8(-39 \%)$	46.0 ± 2.6 (-15\%)	$50.6 \pm 2.2(-13 \%)$	0.389 ± 0.014 (0\%)
	$L_{2}=L_{A D V}+L_{M S E}$	74.2 ± 2.3 (0\%)	81.4 ± 0.8 (0\%)	$53.8 \pm 1.4(0 \%)$	$57.9 \pm 2.3(0 \%)$	$0.401 \pm 0.0014(-3.1 \%)$
Ablation study	ADV Model	DVD \rightarrow Electronics	Books \rightarrow Kitchen	Kitchen \rightarrow Electronics	DVD \rightarrow Books	
ADV-MSE weighting in L_{2}	$L_{2}=L_{M S E}$	71.47 (-1.5\%)	71.39 (-1.8\%)	77.58 (-0.77\%)	72.02 (-0.81\%)	
	$L_{2}=L_{A D V}+L_{M S E}$	72.57 (0\%)	72.69 (0\%)	78.18 (0\%)	72.61 (0\%)	

Figure 1: Adaptation-Imputation T CE (\downarrow) on ads-kaggle wrt $\lambda_{\text {MSE }}$

Conclusion

- L_{1} is useful.
- $L_{A D V}$ in L_{2} is useful.

Conclusion

Conclusion

Problem

New end-to-end approach for non-stochastic missing data based on an adaptation-imputation problem.

Conclusion

Problem

New end-to-end approach for non-stochastic missing data based on an adaptation-imputation problem.

Theory

Clear assumptions and upper-bounds minimized by our model.

Conclusion

Problem

New end-to-end approach for non-stochastic missing data based on an adaptation-imputation problem.

Theory
Clear assumptions and upper-bounds minimized by our model.

Experiments

Superior performance over representative baselines on real-world datasets with extremely different characteristics.

Conclusion

Thank you for your attention!

Code: https://github.com/mkirchmeyer/adaptation-imputation Contact information:

■ Matthieu Kirchmeyer: matthieu.kirchmeyer@gmail.com

References

References I

Ben-David, Shai et al. (2010). "A theory of learning from different domains".
In: Machine Learning 79.1, pp. 151-175.
Rubin, Donald B. (Dec. 1976). "Inference and missing data". In: Biometrika 63.3, pp. 581-592.

[^0]: $1_{\text {http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/ }}$

