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Missing data

Missing data is present in many real-world applications.

Existing methods usually consider stochastic missing data.

Missing Completely At Random (MCAR) Rubin 1976

∀x, pφ(m|x) = pφ(m)

m stochastic.
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Non-stochastic missing data

MCAR when m is deterministic, a.k.a. non-stochastic
missing data, is seldom considered.

Yet, common in applications e.g. cold-start

Partner B cold-start

Contributions

Handle non-stochastic missing data with unsupervised domain
adaptation (UDA).
Formalize the problem.
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Adaptation-Imputation problem definition

1 labelled xS and unlabelled xT under distribution shift.

2 xe = (xe1 , xe2), e ∈ {S ,T} with xS fully observed; xT2 missing.
3 no supervision for imputation on T .
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Adaptation-Imputation problem definition

1 labelled xS and unlabelled xT under distribution shift.
2 xe = (xe1 , xe2), e ∈ {S ,T} with xS fully observed; xT2 missing.
3 no supervision for imputation on T .

(1), (2) → UDA under non-stochastic missingness.

(3) → imputation without supervision.

Goal: train a classifier ĥ with low classification error on T .
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Model components

Model: ĥ : X1 → Y = {0, . . . ,K}, ĥ = f ◦ ĝ on S and T

ĝ : X1 → Z = (Z1,Z2) encoder using xe1 .

g1 : X1 → Z1 encoder of xe1 .
r : Z1 → Z2 conditional generator of ze2 given ze1 .

f : Z → Y = {0, . . . ,K} classifier.
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Reference: h : X → Y, h = f ◦ g only on S

g : X1 ×X2 → Z encoder with both (xe1 , xe2) components.
g2 : X2 → Z2 encoder of xe2 .
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Model training

Adversarial training

Three modules for imputation, adaptation, classification.

Imputation: alignment loss L2 = LADV + λMSELMSE .
Adaptation: alignment loss L1.
Classification: cross-entropy loss L3.
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Model training

min
g1,g2,r,f

max
D1,D2

L1 + (LADV + λMSELMSE ) + L3 (1)
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Assumptions

Conditional invariance
After projection with g = (g1, g2),

pS(Z2|Z1) = pT (Z2|Z1), pS(Z1) 6= pT (Z1)

We can use available supervision in S to infer pT (Z2|Z1).

Covariate shift
After projection with ĝ = (g1, r ◦ g1),

pS(Y |Ẑ ) = pT (Y |Ẑ ), pS(Ẑ ) 6= pT (Ẑ )

We can find ĥ = f ◦ ĝ with low source and target error; common
assumption for UDA.

Upper-bounds

Adaptation upper-bound of the target error of ĥ
Imputation upper-bound of the target error of h
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We can find ĥ = f ◦ ĝ with low source and target error; common
assumption for UDA.

Upper-bounds

Adaptation upper-bound of the target error of ĥ
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Upper-bounds

Adaptation upper-bound Ben-David et al. 2010

Given f ∈ F and ĝ

εT (f ◦ ĝ) ≤
[
εS(f ◦ ĝ) + dF∆F (pS(Ẑ ), pT (Ẑ )) + λHĝ

]
︸ ︷︷ ︸

Domain Adaptation (DA)

(2)

εe(·): expected error on e ∈ {S ,T}
dF∆F : F∆F-divergence; F∆F : symmetric difference
hypothesis space h ∈ F∆F ⇐⇒ ∃f1, f2 ∈ F , h(x) = f1(x)⊕ f2(x)

λHĝ
: joint risk of the optimal hypothesis

λHĝ
= min

f ′∈F

[
εS(f ′ ◦ ĝ) + εT (f ′ ◦ ĝ)

]
L3 → 1st term, L1 → 2nd term, Covariate Shift → 3rd term small.
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: joint risk of the optimal hypothesis

λHĝ
= min

f ′∈F

[
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]

L3 → 1st term, L1 → 2nd term, Covariate Shift → 3rd term small.

7/14



Introduction Model Formalization Experiments Conclusion References

Upper-bounds

Adaptation upper-bound Ben-David et al. 2010

Given f ∈ F and ĝ
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[
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Upper-bounds

Imputation upper-bound

Under Conditional Invariance, given f , ĝ and g ,

εT (f ◦ g) ≤ sup
z∼p(Z)

[
pS(Z2 = z2|z1)

pS(Ẑ2 = z2|z1)
]︸ ︷︷ ︸

Imputation error on S (IS )

× sup
z∼p(Z)

[
pS(Ẑ2 = z2|z1)

pT (Ẑ2 = z2|z1)
]︸ ︷︷ ︸

Transfer error of Imputation (TI )︸ ︷︷ ︸
Imputation error on T (IT )

× εT (f ◦ ĝ) (3)

L2 → (IS), L1 → (TI ), (DA) → 3rd term.
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Experimental setting

Baselines

Full: full xS and xT.
ZeroImputation: full xS; missing xT2 set to 0, xT = (xT1 , 0).
IgnoreComponent: only xS1 , xT1 ; xS2 , xT2 ignored.
Imputation: full xS; missing xT2 imputed.
Two divergences for aligning distributions:

H-divergence
Wasserstein distance

Datasets and Metrics

digits (missing half pixels): accuracy
Amazon product reviews (missing half embeddings): accuracy
challenging real-world advertising datasets1: cross-entropy

1
http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/

9/14

http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/


Introduction Model Formalization Experiments Conclusion References

Experimental setting

Baselines

Full: full xS and xT.

ZeroImputation: full xS; missing xT2 set to 0, xT = (xT1 , 0).
IgnoreComponent: only xS1 , xT1 ; xS2 , xT2 ignored.
Imputation: full xS; missing xT2 imputed.
Two divergences for aligning distributions:

H-divergence
Wasserstein distance

Datasets and Metrics

digits (missing half pixels): accuracy
Amazon product reviews (missing half embeddings): accuracy
challenging real-world advertising datasets1: cross-entropy

1
http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/

9/14

http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/


Introduction Model Formalization Experiments Conclusion References

Experimental setting

Baselines

Full: full xS and xT.
ZeroImputation: full xS; missing xT2 set to 0, xT = (xT1 , 0).

IgnoreComponent: only xS1 , xT1 ; xS2 , xT2 ignored.
Imputation: full xS; missing xT2 imputed.
Two divergences for aligning distributions:

H-divergence
Wasserstein distance

Datasets and Metrics

digits (missing half pixels): accuracy
Amazon product reviews (missing half embeddings): accuracy
challenging real-world advertising datasets1: cross-entropy

1
http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/

9/14

http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/


Introduction Model Formalization Experiments Conclusion References

Experimental setting

Baselines

Full: full xS and xT.
ZeroImputation: full xS; missing xT2 set to 0, xT = (xT1 , 0).
IgnoreComponent: only xS1 , xT1 ; xS2 , xT2 ignored.

Imputation: full xS; missing xT2 imputed.
Two divergences for aligning distributions:

H-divergence
Wasserstein distance

Datasets and Metrics

digits (missing half pixels): accuracy
Amazon product reviews (missing half embeddings): accuracy
challenging real-world advertising datasets1: cross-entropy

1
http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/

9/14

http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/


Introduction Model Formalization Experiments Conclusion References

Experimental setting

Baselines

Full: full xS and xT.
ZeroImputation: full xS; missing xT2 set to 0, xT = (xT1 , 0).
IgnoreComponent: only xS1 , xT1 ; xS2 , xT2 ignored.
Imputation: full xS; missing xT2 imputed.

Two divergences for aligning distributions:
H-divergence
Wasserstein distance

Datasets and Metrics

digits (missing half pixels): accuracy
Amazon product reviews (missing half embeddings): accuracy
challenging real-world advertising datasets1: cross-entropy

1
http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/

9/14

http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/


Introduction Model Formalization Experiments Conclusion References

Experimental setting

Baselines

Full: full xS and xT.
ZeroImputation: full xS; missing xT2 set to 0, xT = (xT1 , 0).
IgnoreComponent: only xS1 , xT1 ; xS2 , xT2 ignored.
Imputation: full xS; missing xT2 imputed.
Two divergences for aligning distributions:

H-divergence
Wasserstein distance

Datasets and Metrics

digits (missing half pixels): accuracy
Amazon product reviews (missing half embeddings): accuracy
challenging real-world advertising datasets1: cross-entropy

1
http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/

9/14

http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/


Introduction Model Formalization Experiments Conclusion References

Experimental setting

Baselines

Full: full xS and xT.
ZeroImputation: full xS; missing xT2 set to 0, xT = (xT1 , 0).
IgnoreComponent: only xS1 , xT1 ; xS2 , xT2 ignored.
Imputation: full xS; missing xT2 imputed.
Two divergences for aligning distributions:

H-divergence
Wasserstein distance

Datasets and Metrics

digits (missing half pixels): accuracy
Amazon product reviews (missing half embeddings): accuracy
challenging real-world advertising datasets1: cross-entropy

1
http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/

9/14

http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/


Introduction Model Formalization Experiments Conclusion References

Experimental setting

Baselines

Full: full xS and xT.
ZeroImputation: full xS; missing xT2 set to 0, xT = (xT1 , 0).
IgnoreComponent: only xS1 , xT1 ; xS2 , xT2 ignored.
Imputation: full xS; missing xT2 imputed.
Two divergences for aligning distributions:

H-divergence
Wasserstein distance

Datasets and Metrics

digits (missing half pixels): accuracy

Amazon product reviews (missing half embeddings): accuracy
challenging real-world advertising datasets1: cross-entropy

1
http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/

9/14

http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/


Introduction Model Formalization Experiments Conclusion References

Experimental setting

Baselines

Full: full xS and xT.
ZeroImputation: full xS; missing xT2 set to 0, xT = (xT1 , 0).
IgnoreComponent: only xS1 , xT1 ; xS2 , xT2 ignored.
Imputation: full xS; missing xT2 imputed.
Two divergences for aligning distributions:

H-divergence
Wasserstein distance

Datasets and Metrics

digits (missing half pixels): accuracy
Amazon product reviews (missing half embeddings): accuracy

challenging real-world advertising datasets1: cross-entropy
1
http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/

9/14

http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/


Introduction Model Formalization Experiments Conclusion References

Experimental setting

Baselines

Full: full xS and xT.
ZeroImputation: full xS; missing xT2 set to 0, xT = (xT1 , 0).
IgnoreComponent: only xS1 , xT1 ; xS2 , xT2 ignored.
Imputation: full xS; missing xT2 imputed.
Two divergences for aligning distributions:

H-divergence
Wasserstein distance

Datasets and Metrics

digits (missing half pixels): accuracy
Amazon product reviews (missing half embeddings): accuracy
challenging real-world advertising datasets1: cross-entropy

1
http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/

9/14

http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/


Introduction Model Formalization Experiments Conclusion References

Results - Target accuracy (↑) and Cross-Entropy (↓)

Conclusion
Our model improves representative baselines:

on all our datasets
for two alignment divergences
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Ablation studies - Model modules

Figure 1: Adaptation-Imputation T CE (↓) on ads-kaggle wrt λMSE

Conclusion

L1 is useful.
LADV in L2 is useful.
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Conclusion

Problem
New end-to-end approach for non-stochastic missing data based on
an adaptation-imputation problem.

Theory

Clear assumptions and upper-bounds minimized by our model.

Experiments

Superior performance over representative baselines on real-world
datasets with extremely different characteristics.
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Conclusion

Thank you for your attention !

Code: https://github.com/mkirchmeyer/adaptation-imputation

Contact information:

Matthieu Kirchmeyer: matthieu.kirchmeyer@gmail.com
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