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Results - Target accuracy (1) and Cross-Entropy ({ S sgpmoune
Dataset MNIST — USPS USPS — MNIST SVHN — MNIST MNIST - MNISTM  ads-kaggle ads-real
Model w/o # ADV OoT ADV OoT ADV OoT ADV OT ADV ADV
Source-Full 71.5=2.7 742427 58.1=1.1 283114 NA
Adaptation-Full 85.843.2  92.6=1.7 94.642.1 93.940.6 78.0:3.4 76.1+14 60.843.8  46.943.9 NA
Source-Zerolmputation 25737 39.242.6 31.5+2. 14.4+1.1 0.545+0.019 0.663+0.011
daptati i 48.4+4.8 60963 675422 653452 47.1+5.7 37.5+6.2 34.7+2.5 20.2+2.5 0.397+0.0057 0.660+0.025
Source-IgnoreComponent 52.9=9.7 54.3+1.6 44.6=1.9 19.1£2.6 0.406+0.00046  0.622+0.0048

Adaptation-IgnoreComponent  71.5+3.2  64.0=5.0  80.0+1.4  72.0+1.8 45.5+1.9 47.9+1.8 294+1.6 26.8+4.4  0.403=0.0030  0.634=0.0082
d: i i 74.2+23  66.8-1.3 81.4+0.8 72.5+2.7 53.8+1.4 49.2+L5 57.9+2.3 29.2+14 0.389+0.014 0.583+0.013

Dataset DVD — Electronics  Books — Kitchen  Kitchen — Electronics  DVD — Books
Source-Full 69.57 73.04 77.88 71.95
Adaptation-Full 73.62 74.09 79.63 72.65
Source-Zerolmputation 58.51 60.52 66.27 61.15
Adaptation-ZeroImputation 64.51 61.08 68.02 62.80
Source-IgnoreComponent 60.21 62.03 67.62 64.35
Adaptation-IgnoreComponent 61.02 64.08 68.47 66.00
Adaptation-Imputation 72.57 72.69 78.18 72.61

Conclusion

Our model improves representative baselines:

m on all our datasets

m for two alignment divergences
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Ablation studies - Model modules Sggmggg

Ablation study ADV Model MNIST - USPS____USPS —» MNIST ___SVHAN — MNIST __ MNIST — MNISTM ads—kaggle
Ll LithLtl L=l +Als 642518 (13%) 513225 (31%) 445514 (17%) 241526 (58%) __ 0.410+0.0020 (-5.4%)
To = Losse 719537 (3.1%) 31.4-1.2 0%) 52.523.1 (-24%) 565228 (24%)  0.400=0.0014 (:2.8%)
o Ly =Lapy 286132(-61%)  39.4152(-52%) 28.813.8 (-46%) 30.013.7 (-48%) 0.46910.13 (21%)
ADV-MSE weighting in L, = Lapy +0.005 x Lyss: 47.8+3.7 (-36%) 49.6+5.8 (-39%) 46.02.6 (-15%) 50.6+2.2 (-13%) 0.389:0.014 (0%)
Ly = Lapy +Luse 74.212.3 0%) 81.4:0.8 (0%) 538114 (0%) 57.9:2.3 (0%) 0.401+0.0014 (-3.1%)
“Ablation study ADV Model DVD — Electronics_ Books — Kitchen _ Kitchen —» Electronics DVD — Books
ADvasE P T =Lurse TT47 (-1.5%) 7139 (-1.8%) 77.58 (-0.77%) 72.02 (0.81%)
~MSE weighting in L2 Lp = Lapv +Luse 7257 (0%) 72.69 (0%) 78.18 (0%) 72,61 (0%)
0.60 ~# L2=Lluse
—— Lo =Laoy+Ause X Luse
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Figure 1: Adaptation-Imputation T CE (]) on ads-kaggle wrt Ayse

Conclusio

m L is useful.

m Lapy in Lo is useful.
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New end-to-end approach for non-stochastic missing data based on
an adaptation-imputation problem.
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New end-to-end approach for non-stochastic missing data based on
an adaptation-imputation problem.

Clear assumptions and upper-bounds minimized by our model.
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New end-to-end approach for non-stochastic missing data based on
an adaptation-imputation problem.

Theory

Clear assumptions and upper-bounds minimized by our model.

Experiments

Superior performance over representative baselines on real-world
datasets with extremely different characteristics.
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Thank you for your attention !

Code: https://github.com/mkirchmeyer/adaptation-imputation

Contact information:

m Matthieu Kirchmeyer: matthieu.kirchmeyer@gmail.com
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